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V I '  

FOREWORD 

This  r e p o r t  is  concerned p r i m a r i l y  w i t h  t h e  s u b j e c t  i n d i c a t e d  

by t h e  t i t l e ,  a review of l i t e r a t u r e  on  thermal c o n t a c t  conductance i n  a 

vacuum. A f t e r  t h e  review w a s  i n i t i a t e d ,  however, i t  became clear  t h a t  a 

s t r i c t  i n t e r p r e t a t i o n  of t h e  s u b j e c t  would impose an unna tu ra l  l i m i t a t i o n  

on t h e  scope of t h e  review. I n  s e l e c t i n g  r e f e r e n c e s ,  t h e r e f o r e ,  t h e  ten- 

dency was t o  inc lude  even those  not concerned d i r e c t l y  o r  e x c l u s i v e l y  w i t h  

a vacuum environment. 

A a t t empt  w a s  made t o  match t h e  coverage given a r e f e r e n c e  w i t h  

i t s  re l evance  and importance. Some are  r epor t ed  thoroughly. I n  some 

o t h e r  cases, only t h e  n a t u r e  of t h e i r  con ten t  is  i n d i c a t e d .  All a r t i c l e s  

c i t e d  have been included i n  the list of r e f e r e n c e s .  A l l  a r t i c l e s  bea r ing  

on thermal c o n t a c t  conductance which w e  decided no t  t o  review have been 

l i s t e d  i n  t h e  bibliography*, provided they had no t  a l r e a d y  been l i s t e d  i n  

t h e  ex tens ive  b ib l iog raphy  by Atkins [5]**., 

*Appendix C. 
**Numbers i n  b racke t s  i n d i c a t e  r e fe rences  l i s t e d  i n  Sec t ion  9. 
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ABSTRACT 

The literature on thermal contact conductance in a vacuum is 
Following a discussion of the fundamentals of heat transfer reviewed. 

across an interface, the results of several theories which ignore surface 
waviness and one which attempts to account for it are presented. Attempts 
at data correlations are also described. Surface structure and the de- 
formation of surfaces under load, as they affect the actual contact area 
and thermal conductance at an interface, are discussed in some detail. 
The useof interface fillers and the results of studies of heat transfer 
across bolted and riveted joints are also discussed. 
given to the dominant sources of data in the literature. In addition to. 
a list of references reviewed, this report includes an extensive biblio- 
graphy of references which did not appear in the 1965 bibliography by 
H. Atkins. 
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NOMENCLATURE* 

a Radius of contact area (m). 
A Area (m 2 ). 

A Apparent contact area (m2). 

b Radius of cylindrical heat channel (m). 
aP 

B Brinell hardness (n/m2). 
d Separation between two parallel walls (m). 

d Flatness deviation (m). 
E 

Em 
F 
F 

Modulus of elasticity (n/m2). 
Harmonic mean of two moduli, E m 
Normal load on the interface (n). 
View factor (see Section 3 . 3 ) .  

Constriction alleviation factor (ND). 
Thermal contact conductance (w/m2 O K )  
Hardness (n/m2). 

Thermal conductivity (w/m OK). 

= 2E1E2/(E1+E2); (ND). 

km 

L Length (m). 

Harmonic mean value of the thermal conductivities of two materials 
in contact; k = 2kl k2/(kl + k2); (ND) .  m 

AL Length of contact members having same thermal resistance as the in- 

M Molecular weight (kg/kg-mole) . 
m terface resistance (m). 

n Number of contact points per unit area (l/m 2 ). 
N Number of contact points (ND). 
p Pressure (n/m 2 >. 

2 Apparent contact pressure (n/m ).  
aP 

*Units in the MKS system are given to help clarify the meaning of the 
symbols, but they do not necessarily agree with the units to be used in 
the formulas in which the symbols appear. 
quantity is non-dimensional. 

The designation, ND, means the 
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r 
R 
R' 

RL 
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AT 
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NOMENCLATURE (CONT. ) 

Heat f low rate per unit area, or thermal flux (w/m 2 1. 

Total heat flow rate (w). 
Radius (m). 
Thermal contact resistance per unit area (m2 'K/w). 

Total thermal contact resistance ( O K / w ) .  

Macroscopic thermal constriction resistance (OK/w) .  

Universal gas constant (8317.0 joules/"K kg-mole). 
Temperature jump distance (m) 

Ultimate strength (n/m2). 
Temperature ( O K ) .  

Temperature drop across an interface between two solids in contact 
(OK). See Section 3.1. 
Constriction ratio, x = a/b, (ND). 
Yield stress (n/m2). 

Initial elastic limit (n/m2). 
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P 
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NOMENCLATURE (CONT. ) 

GREEK LETTERS 

Accommodation coefficient (ND). 
Ratio of specific heat at constant pressure to specific heat at con- 
stant volume (c /c ). 

P V  
Film thickness (m). 

Depth of gap (m). 

Emissivity (ND) . 
Empirical deformation factor (see Section 4.1.1), (ND).  
Elastic conformity modulus (see Section 4.2),(ND). 

Mean of the absolute values of the slopes of the surface texture (ND). 
Density (kg/m3). 

Root mean square deviation of surface height from the mean plane (m). 
Stefan-Boltzmann constant (5.6697 x w/m2 OK4). 
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aP 
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f3 
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NOMENCLATURE (CONT. ) 

SUBSCRIPTS 

Surfaces 1 and 2. 

Apparent. 

Flu id .  

Gas. 

Macroscopic constriction or  contact area. 
Mean. 

Metal. 

Surface f i l m .  

Roughness. 

Reference value. 

Microscopic constriction or contact area. 

Total. (Roughness plus waviness.) 



1. INTRODUCTION 

This  r e p o r t  i s  a review of l i t e r a t u r e  d i r e c t l y  o r  i n d i r e c t l y  

r e l a t e d  t o  thermal con tac t  conductance i n  a vacuum. 

It i s  d i f f i c u l t  t o  provide f o r  t h e  d i s s i p a t i o n  of hea t  from 

e l e c t r o n i c  components and o the r  equipment i n  v e h i c l e s  s e n t  i n t o  space, 

where t h e  vacuum environment e l i m i n a t e s  convection i n  and around each 

component. 

must f r e q u e n t l y  c r o s s  t h e  i n t e r f a c e  between s u r f a c e s  i n  c o n t a c t  - such 

as bo l t ed  and r i v e t e d  j o i n t s ,  

of conduction i n  a complex s t r u c t u r e  is  t h e  p r e d i c t i o n  of thermal con- 

ductance a c r o s s  such j o i n t s .  

I n  i t s  p a t h  t o  heat s i n k s  and r a d i a t i n g  s u r f a c e s ,  h e a t  

One of t h e  weakest l i n k s  i n  t h e  a n a l y s i s  

J o i n t  conductance can have an important i n f l u e n c e  on temperature 

d i s t r i b u t i o n s  and thermal s t r e s s e s .  This i n f l u e n c e  i s  d i scussed  i n  

t h e  case of a i r c r a f t  s t r u c t u r e s ,  i n  Refs. 18c and 51a. 

Although one i s  usua l ly  concerned wi th  f a c i l i t a t i n g  t h e  flow 

of h e a t ,  which r e q u i r e s  high thermal conductance, t h e r e  are a p p l i c a t i o n s  

i n  which h igh  thermal con tac t  r e s i s t a n c e  is  requ i r ed  f o r  i n s u l a t i o n .  

Ref. 99a, f o r  example, includes papers  which d i s c u s s  t h e  use  of m u l t i l a y e r  

i n s u l a t i o n  f o r  space v e h i c l e s  u s ing  cryogenic f l u i d s .  

Although advances have been made i n  our  understanding of some of 

t h e  many f a c t o r s  which in f luence  thermal c o n t a c t  conductance, t h e  problem 

is so complex t h a t  i t  is  s t i l l  n o t  p o s s i b l e  t o  p r e d i c t  v a l u e s  of thermal 

c o n t a c t  r e s i s t a n c e  f o r  r e a l  j o i n t s ,  except f o r  a l i m i t e d  range of con- 

d i t i o n s .  Inadequate awareness and c o n t r o l  of cond i t ions  a f f e c t i n g  con- 

t a c t  conductance has  sometimes r e s u l t e d  i n  experimental  d a t a  a p p l i c a b l e  

f o r  t h e  s p e c i f i c  appa ra tus  used i n  t h e  s t u d i e s  but  having l i t t l e  gene ra l  

u s e f u l n e s s .  Experiments performed under cond i t ions  s imula t ing  i d e a l i z e d  

mathematical  models have been more s u c c e s s f u l  i n  e l l u c i d a t i n g  t h e  b a s i c  

phenomena involved. On t h e  o the r  hand, t h e  e x t e n t  t o  which i d e a l  models 

1 



have dev ia t ed  from a c t u a l  i n t e r f a c e s  has  l i m i t e d  t h e i r  u s e f u l n e s s  i n  

p r e d i c t i n g  values  of thermal c o n t a c t  conductance f o r  real  j o i n t s .  

work is required both i n  s tudying some of t h e  b a s i c  phenomena under i d e a l  

cond i t ions  and i n  i n t e g r a t i n g  t h e  r e s u l t s  of such s t u d i e s  i n t o  models 

conforming t o  r e a l  j o i n t s  a c c u r a t e l y  enough f o r  p r e d i c t i v e  use.  Because 

of t h e  many f a c t o r s  a f f e c t i n g  con tac t  r e s i s t a n c e  and t h e  i n t e r - r e l a t i o n s  

among them, however, i t  may n o t  be f e a s i b l e  t o  e l i m i n a t e  t h e  empi r i ca l  

approach f o r  many s i t u a t i o n s  of p r a c t i c a l  i n t e r e s t .  

More 

2 



2. SUMMARY 

Heat t r a n s f e r  a c r o s s  t h e  i n t e r f a c e  between two s o l i d s  i n  c o n t a c t  

i s  n o t  a simple phenomenon. 

unevenness ~6 real s u r f a c e s  causes extremely imperfect  mating between 

c o n t a c t i n g  s u r f a c e s ,  introducing a r e s i s t a n c e  t o  hea t  flow. Even t h e  

smoothest s u r f a c e s  are bumpy on a micro s c a l e ,  and g e n e r a l l y  they are no t  

f l a t .  Thus, s u r f a c e  unevenness u s u a l l y  c o n s i s t s  of small-scale roughness 

superimposed on l a r g e - s c a l e  uaviness. 

t hey  touch a t  small areas governed by t h e i r  waviness, and w i t h i n  t h e s e  

s m a l l  areas r ea l  c o n t a c t  occurs a t  i s o l a t e d  s p o t s  governed by t h e  roughness. 

The a c t u a l  c o n t a c t  area is  a small f r a c t i o n  of t h e  apparent  c o n t a c t  area. 

The b a s i c  cause of complexity i s  t h a t  t h e  

When s u r f a c e s  are placed i n  c o n t a c t  

Under most cond i t ions  t h e  only s i g n i f i c a n t  modes of hea t  t r a n s f e r  

a c r o s s  t h e  i n t e r f a c e  are so l id - to - so l id  conduction a t  t h e  p o i n t s  of a c t u a l  

c o n t a c t  and conduction through t h e  i n t e r s t i t i a l  f l u i d .  Because of the 

s m a l l  gap s i z e ,  convection i s  gene ra l ly  n e g l i g i b l e ;  and t h e  temperature  

l e v e l  a t  t h e  i n t e r f a c e  i s  usua l ly  s m a l l  enough f o r  r a d i a t i o n  t o  be neglec- 

t e d  a l s o .  

The f l u i d  conductance can be approximated simply by t h e  r a t i o  of 

t h e  thermal conduc t iv i ty  of t he  f l u i d  t o  t h e  e f f e c t i v e  gap he igh t .  

f o r  f l a t  s u r f a c e s  i t  i s  poss ib l e  t o  relate gap he igh t  t o  t h e  s u r f a c e  

roughnesses,  t h e r e  i s  no general  s o l u t i o n  t o  t h e  problem of e s t ima t ing  

t h e  e f f e c t i v e  gap h e i g h t .  I f  t he  f l u i d  is a gas  a t  such low p r e s s u r e  

t h a t  t h e  mean f r e e  pa th  of gas  molecules i s  comparable 

one must t a k e  accomodation e f f e c t s  i n t o  account.  Under such c o n d i t i o n s  

however, t h e  f l u i d  conductance may become s m a l l  enough t o  be r e l a t i v e l y  

unimportant by comparison wi th  t h e  solid-to-solid-:conductance.  

vacuum environment, f l u i d  conductance i s  absen t ;  h e a t  t r a n s f e r  by r a d i -  

a t i o n  might then become more s i g n i f i c a n t  i f  t h e  temperature  level a t  t h e  

i n t e r f a c e  i s  l a r g e ,  but t h i s  i s  n o t  u s u a l l y  t h e  case .  

Although 

t o  t h e  gap h e i g h t ,  

I n  a 
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The thermal resistance a s s o c i a t e d  wi th  conduction through t h e  

s o l i d  is  caused by c o n s t r i c t i o n  of t h e  hea t  f l u x  through t h e  real c o n t a c t  

areas. 

c o n t a c t ,  t h e  temperature d i f f e r e n c e  between p o i n t s  f a r  removed from t h e  

i n t e r f a c e  w i l l  i nc lude  a c o n t r i b u t i o n  due t o  imperfect c o n t a c t .  The 

problem of computing va lues  of so l id - to - so l id  conductance has  n o t  been 

solved.  Several  t h e o r i e s  have been developed. Some assume t h a t  t h e  

s u r f a c e s  are f l a t  and t h a t  con tac t  occu r s  a t  uniformly d i s t r i b u t e d  s p o t s  

of equa l  s i z e .  Since such t h e o r i e s  are no t  a p p l i c a b l e  t o  non- f l a t  

s u r f a c e s ,  which i n c l u d e s  most s u r f a c e s ,  a t t empt s  have been made t o  develop 

macroscopic c o n s t r i c t i o n  t h e o r i e s  which t a k e  waviness i n t o  account.  I n  

e i t h e r  case ,  t h e r e  e x i s t s  no convenient ,  r e l i a b l e  method of measuring 

t h e  geometr ical  p r o p e r t i e s  of t h e  s u r f a c e s  t o  o b t a i n  v a l u e s  of s u r f a c e  

parameters  appearing i n  t h e  equa t ions .  

While t h e r e  i s  no temperature  d i s c o n t i n u i t y  a t  t h e  p o i n t s  of 

A few a t t e m p t s  have been made t o  develop empi r i ca l  approaches 

involving c o r r e l a t i o n s  of experimental  conductance measurements. So f a r ,  

t h e s e  methods have proved t o  have l i m i t e d  u s e f u l n e s s .  

Many i n v e s t i g a t o r s  have attempted t o  t a k e  advantage of t h e  

analogy between thermal and e lec t r ica l  c o n d u c t i v i t i e s ,  expressed i n  t h e  

Wiedemann-Franz l a w ,  by s u b s t i t u t i n g  more e a s i l y  made e l e c t r i c a l  measure- 

ments f o r  thermal measurements. 

of s u r f a c e  contamination on t h e  two phenomena, however, t h i s  approach 

has  proved u n s a t i s f a c t o r y .  

I n  p a r t  because of t h e  d i f f e r e n t  i n f l u e n c e s  

Although many methods have been t r i e d  t o  ach ieve  s u r f a c e  s t r u c t u r e  

d e s c r i p t i o n s  t h a t  are a p p l i c a b l e  t o  computations of thermal  c o n t a c t  

conductance, they have had l i t t l e  success .  

t h e  r ea l  contact  area between mating s u r f a c e s  which - e s p e c i a l l y  i n  a 

vacuum environment - is i n t i m a t e l y  r e l a t e d  t o  thermal c o n t a c t  conductance. 

One is  a l s o  i n t e r e s t e d  i n  a measure of t h e  ggp h e i g h t .  

g r a p h i c a l ,  analog, and r a d i o g r a p h i c a l  methods, i n  a d d i t i o n  t o  e lectr ical  

c o n d u c t i v i t y  measurements, have been t r i e d .  Reasonable c o r r e l a t i o n s  

between roughness and v a r i o u s  f i n i s h i n g  p rocesses  are a v a i l a b l e ;  but  

waviness depends on so  many parameters  t h a t  i t s  c o r r e l a t i o n  wi th  

The a i m  i s  u s u a l l y  t o  p r e d i c t  

P ro f i lome te r ,  
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f i n i s h i n g  processes  i s  gene ra l ly  conceded t o  be i n f e a s i b l e .  The f u r t h e r  

v a r i a b i l i t y  introduced when su r faces  are j o i n e d  toge the r  makes i t  prac-  

t i c a l l y  impossible t o  p r e d i c t  t h e  a c t u a l  con tac t  area f o r  real  j o i n t s .  

Deformations which occur a t  t h e  i n t e r f a c e  when two s u r f a c e s  are 

Most cons ide r  p re s sed  toge the r  have been s tud ied  by many i n v e s t i g a t o r s .  

t h a t  t h e  a s p e r i t i e s  deform p l a s t i c a l l y ,  t h e  l o c a l  stress a t  c o n t a c t  s p o t s  

being equal  t o  the  hardness of t h e  s o f t e r  of t h e  two s u r f a c e s  i n  c o n t a c t .  

E l a s t i c  deformation i s  involved i n  t h e  f l a t t e n i n g  of t h e  macroscopic 

i r r e g u l a t  ies  , o r  waviness. 

It has been found experimental ly  t h a t  t h e  s i z e  of i n d i v i d u a l  

c o n t a c t  areas is  approximately c o n s t a n t  ( r a d i u s  of equ iva len t  c i r c u l a r  

area : 30 11) f o r  a wide v a r i e t y  of materials and c o n t a c t  c o n d i t i o n s .  

A s  t h e  c o n t a c t  p r e s s u r e  i s  increased,  t h e  real c o n t a c t  area i n c r e a s e s  

most ly  by an  i n c r e a s e  i n  t h e  number of c o n t a c t  s p o t s .  Above approximately 

1400 l b / i n . 2 ,  however, t h e  s ize  of c o n t a c t  s p o t s  does i n c r e a s e  w i t h  

i n c r e a s e  i n  con tac t  p re s su re .  

A l l  s u r f a c e s  have oxide c o a t i n g s  o r  o t h e r  contamination, t h e  

e f f e c t  of which on hea t  t r a n s f e r  i s  no t  w e l l  understood. However, t h e  

e f f e c t  on metal-to-metal thermal conductance, t h e  dominant mode of h e a t  

t r a n s f e r  i n  a vacuum environment, appears  t o  be unimportant.  

The use  of i n t e r f a c e  f i l l e r s  and s u r f a c e  c o a t i n g s  is  e f f e c t i v e  

i n  i n c r e a s i n g  thermal con tac t  conductance. Pas t e - l i ke  f i l l e r s  have 

u s u a l l y  c o n s i s t e d  of s i l i c o n e  g rease ,  sometimes i n t e r s p e r s e d  wi th  a 

powder of high thermal conduc t iv i ty .  F o i l s  of s o f t ,  h igh ly  conduct ive 

material (indium, f o r  example) are  e f f e c t i v e  when compressed between t h e  

s u r f a c e s  of t h e  materials jo ined .  S i m i l a r l y ,  s u r f a c e  c o a t i n g s  of s o f t  

materials having high thermal c o n d u c t i v i t y  (gold,  s i l v e r ,  copper) are 

e f f e c t i v e .  I n  a vacuum environment, t h e s e  methods can i n c r e a s e  thermal 

conductance a c r o s s  a j o i n t  by an  o r d e r  of magnitude. 

I n  p r a c t i c e ,  i n t e r f a c e s  of t h e  type  descr ibed occur i n  b o l t e d  

and r i v e t e d  j o i n t s .  The con tac t  area i s  dependent on many f a c t o r s ,  in-  

c lud ing  p l a t e  t h i ckness ,  m a t e r i a l  p r o p e r t i e s ,  b o l t  and r i v e t  t e n s i o n s ,  
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e x i s t s  even among j o i n t s  which are  meant t o  be i d e n t i c a l .  

t h e  c h a r a c t e r i z a t i o n  of even c a r e f u l l y  c o n t r o l l e d  j o i n t s  t y p i c a l  of 

s p a c e c r a f t  design i s  d i f f i c u l t .  

geometry, t he re  may be d i f f e r e n c e s  between l o c a l  p h y s i c a l  p r o p e r t i e s  and 

t h o s e  of t h e  bulk material because of s u r f a c e  s t r a i n s  r e s u l t i n g  from 

machining and assembly processes .  

t h e  p r o p e r t i e s  c o n t r o l l i n g  hea t  t r a n s f e r .  

Experience shows t h a t  wide f a b r i c a t i o n  v a r i a b i l i t y  

Therefore ,  

I n  a d d i t i o n  t o  v a r i a t i o n s  i n  con tac t  

Surface contaminants may a l s o  a l te r  

It is p o s s i b l e  t o  e n t i m a t e  t h e  thermal c o n t a c t  conductance 

a c r o s s  a bol ted o r  r i v e t e d  j o i n t  because t h e r e  i s  a p p r e c i a b l e  con tac t  

between t h e  p l a t e s  only i n  t h e  immediate v i c i n i t y  of t h e  f a s t e n e r s .  

The procedure t h a t  has been used invo lves  computing t h e  con tac t  p r e s s u r e  . 
d i s t r i b u t i o n  i n  t h e  v i c i n i t y  of t h e  f a s t e n e r ,  d i v i d i n g  t h e  area i n t o  

annu la r  zones, a s s i g n i n g  t o  each zone a v a l u e  of thermal  conductance 

based on experimental  conductance v e r s u s  p r e s s u r e  d a t a ,  and adding t h e  

c o n t r i b u t i o n s  of each zone t o  o b t a i n  t h e  t o t a l  conductance. One 

d i f f i c u l t y  with t h i s  procedure is t h a t ,  because of t h e  high c o n t a c t  

p r e s s u r e s  t h a t  can e x i s t  under t h e  f a s t e n e r ,  i t  may be necessary t o  

e x t r a p o l a t e  the experimental  conductance d a t a  t o  p r e s s u r e s  exceeding 

t h o s e  a t  which measurements have been made. 

procedure has n o t  been e s t a b l i s h e d ,  and some i n v e s t i g a t o r s  t h i n k  t h a t  

r e l i a b l e  r e s u l t s  can be obtained only by making measurements on t h e  

a c t u a l  j o i n t s  of  i n t e r e s t .  

The r e l i a b i l i t y  of t h e  

H e a t  t r a n s f e r  a c r o s s  t h e  i n t e r f a c e  between two materials i n  

c o n t a c t  i s  seen t o  be a complex phenomenon. I n  a d d i t i o n  t o  t h e  c o n d i t i o n s  

d i scussed  above, o t h e r  p e r t i n e n t  parameters  i nc lude  t h e  mean i n t e r f a c e  

temperature ,  t h e  magnitude of t h e  h e a t  f l u x  a c r o s s  t h e  i n t e r f a c e ,  hys t e r -  

esis e f f e c t s  and t r a n s i e n t  e f f e c t s .  

t h e o r e t i c a l  and experimental  s t u d i e s  of t h e  problem, bu t  t h e r e  i s  s t i l l  

no g e n e r a l  procedure f o r  p r e d i c t i n g  t h e  thermal conductance of real j o i n t s .  

Much h a s  been l e a r n e d  from t h e  many 
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3. FUNDAMENTALS 

3.1 Definition of Thermal Contact Resistance and Conductance 

S u f f i c i e n t l y  f a r  from t h e  i n t e r f a c e  between two s o l i d s  i n  

c o n t a c t ,  h e a t  f low may b e  uniform and u n i d i r e c t i o n a l ;  bu t  t h e  f low 

becomes decidedly three-dimensional i n  t h e  v i c i n i t y  of t h e  i n t e r f a c e .  

Heat f low lines are r e d i s t r i b u t e d  so  t h a t  t h e i r  d e n s i t y  i s  g r e a t e r  a t  

p o i n t s  of low thermal r e s i s t a n c e ,  which are u s u a l l y  a t  t h e  c o n t a c t  

p o i n t s .  Thermal con tac t  r e s i s t a n c e  is  a s s o c i a t e d  wi th  t h i s  r eg ion  of 

i n f luence .  A s  a consequence of imperfect  c o n t a c t ,  t h e  temperature  

d i f f e r e n c e  between two p o i n t s  f a r  removed from t h e  i n t e r f a c e  w i l l  be  

g r e a t e r  by a n  amount, AT, when compared t o  t h e  temperature  d i f f e r e n c e  

f o r  a p e r f e c t  con tac t .  I n  terms of AT t h e  thermal c o n t a c t  r e s i s t a n c e  

i s  de f ined  as 

R C = A T / q  , ( 3  1) 

where q i s  t h e  hea t  f l ow rate p e r  u n i t  area. 

i s  

The i n t e r f a c e  conductance 

The a d d i t i o n a l  temperature drop, AT, may be determined by e x t r a p o l a t i o n  

t o  t h e  i n t e r f a c e  of t h e  temperature g r a d i e n t s  i n  both members i n  r e g i o n s  

where t h e  e f f e c t  of t h e  i n t e r f a c e  i s  n e g l i g i b l e .  

Fac to r s  which cause the temperature  g r a d i e n t  i n  rod - l ike  

specimens t o  vary wi th  d i s t a n c e  from t h e  i n t e r f a c e  and t h e i r  i n f l u e n c e  

on t h e  determinat ion of t h e  temperature drop a c r o s s  t h e  i n t e r f a c e  are 

considered i n  Ref. 25,  (Ch. 3 and Sec 5 . 4 ) .  

b 
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3 . 2  Modes of Heat Transfer a t  an Interface 

Generally, heat transfer across an interface may take place by 

three modes: thermal radiation, conduction at actual contact areas, and 

interstitial conduction. Although these three modes of heat transfer 

are interdependent because the resistance of each path is sensitive to 

the heat flux through it, the dependence is not strong, and it is usually 

ignored . 
The mean height of the interstitial voids is so small that 

heat transfer by free convection is insignificant compared to that by 

conduction. Also, it may be assumed that the heat conducted through 

the gas flows entirely in the direction perpendicular to the interface 
because the gap heights are small relative to the distance between 

contact spots and the thermal conductivity of the interstitial gas is 
generally small compared to the solid conductivity. 

3 . 3  Radiant Heat Transfer 

The heat transferred by radiation (per unit time and area) 
between two parallel surfaces is given by the expression 

q = o F ( T 1  4 - T 2 )  4 (3  3) 

where 

F =  = view factor, 
El + E2 - El E2 

(5 = Stefan-Boltzmann Constant, 
E = thermal emissivity, 
T = absolute temperature, 

and the subscripts 1 and 2 refer to the two surfaces. 

is small, as it usually is, q can be approximated by 
If (T1 - T2)/(T1 + T2) 

( 3 . 4 )  
3 q = 4~ F T, (T, - T,,) , 

Y. A. 

where 

T = (T1 + T2)/2 . m 
The view factor in the above expressLons must be modified for radiation 
between walls of other geometric arrangements (see Ref. 60). 
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I f  t h e  c o e f f i c i e n t  of (T1 - T2) i n  Eq. (3.4) i s  added t o  t h e  

corresponding c o e f f i c i e n t  i n  the f l u i d  conduction equa t ion ,  Eq. (3 .9) ,  

and t h e  sum is  m u l t i p l i e d  by t h e  e f f e c t i v e  gap h e i g h t ,  6 ,  t h e  r e s u l t  

may be regarded as an  e f f e c t i v e  thermal  c o n d u c t i v i t y  of t h e  gas ,  t a k i n g  

account of both conduction and r a d i a t i o n .  

Some i n v e s t i g a t o r s  have measured t h e  h e a t  t r a n s f e r r e d  by r a d i -  

a t i o n  by performing experiments i n  a vacuum wi th  t h e  j o i n t  s u r f a c e s  

sepa ra t ed  by a s h o r t  d i s t a n c e .  Sommers and Coles [97] made such measure- 

ments w i th  s t a i n l e s s  steel specimens and ob ta ined  a conductance of on ly  

8.54 Btu/hr  f t 2  OF. 

r e s u l t e d  i n  a temperature  drop of 1132 O F  a c r o s s  t h e  j o i n t  and a mean 

i n t e r f a c e  temperature  of 736 OF. With copper s u r f a c e s  i n  a vacuum a t  

a temperature  of -195 O C ,  Jacobs and S t a r r  [59] found t h a t  t h e  thermal 
-3 conductance remained less than  10 w/cm2 O C  (2 Btu/hr f t 2  OF) whether 

t h e  s u r f a c e s  were " j u s t  touching" o r  s epa ra t ed  by a few m i l l i m e t e r s .  

A t  ve ry  low c o n t a c t  p r e s s u r e s ,  e s p e c i a l l y  i n  a vacuum, t h e  h e a t  t r a n s -  

f e r r e d  by r a d i a t i o n  i s  an  important f a c t o r ;  but  i t  becomes a n e g l i g i b l e  

f a c t o r  a t  normal c o n t a c t  p re s su res ,  which u s u a l l y  exceed 100 l b / i n 2 .  

They used a h e a t  f l u x  of 9660 Btu/hr f t 2 ,  which 

3 . 4  Gaseous Conduction Across Small Gaps and the Effect of Low Pressure 

Ignoring edge e f f e c t s ,  t h e  h e a t  conducted (pe r  u n i t  t i m e  and 

a r e a )  through a gas between p a r a l l e l  w a l l s  s epa ra t ed  by a d i s t a n c e  d is: 

q = k (T1 - T2)/d,  (3  5) 
where k is t h e  thermal conduc t iv i ty  of t h e  gas  and T 

w a l l  temperatures.  I f  t h e  sepa ra t ion  i s  r e l a t i v e l y  s m a l l ,  it i s  necessa ry  

t o  t a k e  i n t o  account t h e  accormnodation e f f e c t  a t  t h e  w a l l s  [64] .  This can 

be done by adding t h e  temperature j w n p  distances, s1 and s 

s e p a r a t i o n  

and T2 are t h e  1 

t o  t h e  w a l l  2 '  

where 
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a; = accomodation coefficient at wall j, j = 1, 2, 
J 

= ratio of specific heats (C /C >, P V  Y 

M = Molecular weight, 

pg = ambient gas pressure, 

= gas temperature, Tg 
R = universal gas constant. 

The accommodation coefficient is defined as the fractional 
extent to which those molecules that fall on a surface and are reflected 

or re-emitted from it have their mean energy 
value it would have if the returning molecules were in equilibrium with 

the wall. In terms of temperatures, the accommodation coefficient may 

be written 

accomoduted toward the 

where subscripts i, r, and w stand for the incident and returning mole- 
cules and the wall. 

Continuum theory ceases to apply when the walls are so close 
together or the gas pressure so low that the mean free paths of the 
gas molecules exceed the wall separation and collisions between mole- 
cules are rare. One then has free molecule conduction, and d may be 

neglected by comparison with s, + s,, so that 

I 
I 

1 

I 
i 

where T is the mean gas temperature. By expressing the accommodation 
coefficient factor of the above equation in terms of other gas properties 

[32], it is possible to rewrite q in a form more amenable to computations [ 4 1 ] :  

g 

(3.10) -3 9 
q = 5.53 x 10 (;--:) p, (T1 - T2) (Btu/in2 sec), fi 

B 
I 

with p 

is proportional to the gas pressure and independent of the wall separation. 
It does depend on the shape of the walls, however; and the above equation, 
which applies to parallel walls, must be modified for other configurations. 

in psia and T in OR. Under these conditions the heat conduction 
g 
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Wiedmann and Trumpler [lo41 r epor t ed  measured accommodation co- 

e f f i c i e n t s  f o r  a i r  on v a r i o u s  metals, t h e  v a l u e s  of which ranged be- 

tween 0.87 and 0.97. 

f r e e  p a t h s  are a l s o  given i n  Refs. 32 and 64. 

Values of accommodation c o e f f i c i e n t s  and mean 

An example of t h e  use of accommodation c o e f f i c i e n t s  i n  t h e  

a n a l y s i s  of a thermal con tac t  r e s i s t a n c e  problem may be found i n  Ref. 36. 

There, Sanderson's d a t a  [88a] on t h e  thermal c o n t a c t  r e s i s t a n c e  between 

t h e  s o l i d  f u e l  and i t s  cladding i n  a n u c l e a r  r e a c t o r  are  analyzed by 

t h e  theo ry  of Fenech and Rohsenow [38] t o  determine v a l u e s  of accommoda- 

t i o n  c o e f f i c i e n t s  f o r  argon and helium. 

3.5 E f f e c t  o f  Vacuum Environment on Thermal Contact  Conductance 

A t  low c o n t a c t  pressures, gaseous conduction i s  t h e  primary 

mode of h e a t  t r a n s f e r  a t  standard atmospheric p r e s s u r e ;  bu t  i n  t h e  low 

p r e s s u r e  environments of ou te r  space, t h i s  mode of h e a t  t r a n s f e r  becomes 

n e g l i g i b l e .  It i s  g e n e r a l l y  agreed ( s e e  Ref. 61, f o r  example) t h a t  

i n t e r - m e t a l l i c  conduction p r a c t i c a l l y  always dominates o t h e r  modes of 

hea t  t r a n s f e r ,  i nc lud ing  r a d i a t i o n ,  i n  a vacuum environment. A t  t h e  

temperatures  g e n e r a l l y  of i n t e r e s t  i n  space v e h i c l e s  t h e  c o n t r i b u t i o n  

of r a d i a t i o n  i s  s i g n i f i c a n t  only a t  ve ry  low c o n t a c t  p re s su res .  The 

l o s s  of gaseous conduction causes t h e  thermal c o n t a c t  r e s i s t a n c e s  of 

j o i n t s  t o  i n c r e a s e  as much as ten-fold o r  more [99] .  

Experiments by Shlykov and Ganin [92] showed t h a t  t h e  conductance 

of i n t e r s t i t i a l  a i r  remains almost unchanged down t o  ambient p r e s s u r e s  

approaching 1 O O m m  Hg, t hen  decreases  as t h e  p r e s s u r e  i s  lowered f u r t h e r ,  

becoming n e g l i g i b l e  when t h e  p re s su re  i s  of t h e  o r d e r  of 0.1 mm Hg. 

Holm [56 ]  a l s o  found, f o r  t y p i c a l  j o i n t s  between metals, t h a t  t h e  con- 

t r i b u t i o n  of conduction by air w i t h i n  t h e  i n t e r s t i c e s  becomes n e g l i g i b l e  

when t h e  p r e s s u r e  is  decreased below 0 . 1  o r  0.01 mm Hg. The v a r i a t i o n  

of c o n t a c t  conductance wi th  ambient p r e s s u r e  observed by Stubstad [98] 

f o r  a coppe r /b ra s s  j o i n t  is i l l u s t r a t e d  i n  F igu re  3.1. 

There have been a number of i n v e s t i g a t i o n s  i n  which thermal 

c o n t a c t  r e s i k t a n c e  have been measured both a t  atmospheric p r e s s u r e  and 
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AIR PRESSURE ( T O R R )  

Fig.  3.1 - Dependence o f  Thermal Contact  Conductance on Ambient 
Pressure. (From Ref. 98.) 
(TIR stands for to ta l  indicator reading, which is a 
measure of the deviation from flatness.) 

1 2  



in a vacuum environment. Petri [87], for example, measured the thermal 

contact resistance of a joint between molybdenum and aluminum at atmos 

pheric pressure and in a vacuum envsronment, at contact pressures up 

to 1100 lb/in2 . At the lowest contact pressure (40 lb/in2) he found 
that no more than 20 percent of the heat transfer across the joint 

occurred by conduction through air. At a contact pressure of 140 lb/in2 
the difference between thermal contact conductances measured in vacuum 

and at atmospheric pressure had decreased to a value comparable to the 
experimental error; and at higher contact pressures the two measurements 

became indistinguishable. The values of thermal conductance indicated 
that the depth of the interface gap was on the order of 100 times the 
sum of the rms values of roughness of the two surfaces. This was in- 
terpreted as due to the predorninace of surface waviness over the rough- 

ness component. Petri's conclusion that the small difference between 

measurements at atmospheric pressure and under vacuum permits the use 

of data:obtained at atmospheric pressure for vacuum applications is 
subject to question. Only one sample joint was used in obtaining the 

data reported in.Ref. 87, and it is risky to generalize on such a basis. 
Futhermore, the information in Ref. 87 does not make it clear whether 

the test procedure eliminated the possibility of trapped gases affecting 

the results. 
possible that insufficient outgassing occurred at the interface. Stubstad [98], 

for example, questioned whether surfaces placed in contact at atmospheric 
,pressure, even without any wrapping around the exposed edge, ever reaches 

Since the joint was wrapped with asbestos paper, it is 

the environmental pressure in a vacuum chamber. He stated that the 

pressure in the interstices may be orders of magnitude greater than 
the pressure measured by the vacuum gage. 

Stubstad 1991 measured the thermal contact resistance of inter- 
faces between 1/8-in. thick plates of aluminum alloy, stainless steel, 
and copper, at contact pressures between 2 and 20 lb/in 2 , both in air 
at standard atmospheric pressure and under vacuum. In all cases the 

thermal contact resistances were greater by a factor of approximately 

5 in the vacuum environment. 
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3.6 Q u a l i t a t i v e  I n f l u e n c e  o f  Var ious Fac tors  
on Heat Transfer Across a Contact  J o i n t  I 

Heat conduction through areas of a c t u a l  c o n t a c t  i n c r e a s e s  as 

t h e  thermal  c o n d u c t i v i t i e s  of t h e  materials i n  c o n t a c t  i n c r e a s e s .  

f o r  example, showed t h i s  experimental ly  by measurements on j o i n t s  between 

metals whose thermal  c o n d u c t i v i t i e s  ranged over a f a c t o r  of about 1 5  

between t h e  smallest and l a r g e s t  va lues .  

Miller [791 

Experiments w i t h  r e a c t o r  f u e l  elements [781 have shown t h a t  con- 

tact  h e a t  t r a n s f e r  is  a l s o  dependent on t h e  e f f e c t  of r a d i a t i o n  on t h e  

p r o p e r t i e s  of t h e  c o n t a c t  materials. 

Inc reas ing  t h e  thermal c o n d u c t i v i t y  of t h e  medium f i l l i n g  t h e  

i n t e r s t i c e s  h a s  t h e  e f f e c t  of i n c r e a s i n g  t h e  thermal  conductance a c r o s s  

t h e  j o i n t .  A clear demonstration of t h i s  e f f e c t  w a s  obtained by Miller E791 

who i n v e s t i g a t e d  two steel  j o i n t s  a t  c o n t a c t  p r e s s u r e s  up t o  7000 l b / i n 2 ,  

i n  a vacuum environment and a l s o  i n  t h e  p re sence  of carbon d iox ide ,  a i r ,  

and hydrogen a t  atmospheric p re s su re .  

of t h e  gas  not only inc reased  t h e  thermal conductance of t h e  j o i n t s ,  b u t  

I n c r e a s i n g  t h e  thermal c o n d u c t i v i t y  

i t  a l s o  reduced t h e  dependence of conductance on :ontact p re s su re .  A 

similar e f f e c t  w a s  observed by Shlykov and Ganin [92] who conducted ex- 

per iments  with helium. They a l s o  concluded t h a t  conduction through an  . 

i n t e r s t i t i a l  f l u i d  is r e l a t i v e l y  more important  f o r  hard metals having 

low thermal c o n d u c t i v i t i e s .  

c o n d u c t i v i t i e s ,  metal-to-metal conduction predominates. 

as t h e  con tac t  p r e s s u r e  is  inc reased ,  t h e  metal-to-metal component of 

conductance i n c r e a s e s  wh i l e  t h e  f l u i d  conductance remains r e l a t i v e l y  

una f fec t ed .  

For s o f t  metals w i t h  r e l a t i v e l y  h igh  thermal  

I n  e i t h e r  case, 

Specimen geometry may a l s o  have an  e f f e c t  on t h e  measured thermal  

r e s i s t a n c e .  Clausing and Chao [25], f o r  example, showed by an analog 

method t h a t  t h e  c o n s t r i c t i o n  r e s i s t a n c e  between c y l i n d r i c a l  specimens 

is dependent upon t h e  length-to-diameter r a t i o .  A s  t h i s  r a t i o  d e c r e a s e s ,  

t h e  c o n s t r i c t i o n  r e s i s t a n c e  a l s o  dec reases .  The e f f e c t  becomes more 

pronounced as t h e  f r a c t i o n  of i n t e r f a c e  area i n  a c t u a l  c o n t a c t  is  in-  

c r eased ,  but i n  any cese it becomes n e g l i g i b l e  when t h e  l e n g t h  exceeds 

approximately 2/3  t h e  diameter.  
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The degree of conformity between t h e  opposing s u r f a c e s  a t  a 

j o i n t  i s  a dominant f a c t o r  i n  determining t h e  thermal conductance a c r o s s  

t h e  j o i n t .  S tubs t ad  [981 observed t h a t  t h e  va lue  of c o n t a c t  conductance 

changed by a f a c t o r  of more than 70 between newly machined s u r f a c e s  and 

s u r f a c e s  broken-in by c y c l i c  a p p l i c a t i o n  of a c o n t a c t  p r e s s u r e  of 1 0  l b / i n 2  

u n t i l  c o n s i s t e n t  conductance v a l u e s  were measured i n  a vacuum. Ev iden t ly ,  

the breaking-in increased the  conformity of t h e  opposing s u r f a c e s  t o  

each o t h e r .  

t h e  o r i e n t a t i o n  of 1/8-in.  t h i c k  c o n t a c t i n g  p l a t e s  caused t h e  measured 

c o n t a c t  r e s i s t a n c e  t o  change by as much as  34 percen t .  

A t  a con tac t  p re s su re  of 2 l b / i n 2  [99] he found t h a t  changing 

I n c r e a s i n g  t h e  smoothness of t h e  cofitact  s u r f a c e s  causes  an  

i n c r e a s e  i n  t h e  a c t u a l  contact  area and a dec rease  i n  thermal c o n t a c t  

r e s i s t a n c e .  This  e f f e c t ,  however, w a s  no t  found [78] t o  be v e r y  s i g -  

n i f i c a n t  f o r  s o f t  metals a t  high temperatures .  From measurements i n  a 

vacuum environment on j o i n t s  of d i s s i m i l a r  metals having s u r f a c e  f i n i s h e s  

ranging from 5 t o  more than 200 i n . ,  CLAY a t  c o n t a c t  p r e s s u r e s  up t o  

1000 l b / i n 2  , Kaspareck and Dailey [ 621 concluded t h a t  s u r f a c e  f l a t n e s s  

has  more i n f l u e n c e  than  su r face  roughness on i n t e r f a c e  thermal conductance 



4 .  THEORIES OF THERMAL CONTACT CONDUCTANCE AND 
COMPARISONS WITH EXPERIMENTAL DATA 

4 . 1  Theories Which Neglect  Sur face Waviness 

4 .1 .1  O u t l i n e  o f  Usual Theory 

It i s  now recognized t h a t  r e l a t i v e l y  l a rge - sca l e  waviness of 

s u r f a c e s  i n  contact  may have g r e a t e r  i n f luence  than t h e i r  small-scale  

roughness on the a r e a  of  a c t u a l  c o n t a c t  and ,  consequently,  on t h e  thermal 

conductance between t h e m .  Most of t h e  e a r l i e r  t h e o r i e s ,  however, d id  

no t  cons ide r  t he  in f luence  of waviness.  In  e f f e c t ,  t h e  s u s f a c e s  were 

assumed t o  be rough, bu t  nominally f l a t .  

A t  l i g h t  t o  moderate c o n t a c t  p re s su res  t h e  c o n t a c t  s p o t s  are 

s e p a r a t e d  by d i s t a n c e s  which are o r d e r s  of magnitude l a r g e r  t han  t h e  

r a d i u s  of t h e  c o n t a c t  a r e a s .  For nominally f l a t  s u r f a c e s  under t h e s e  

cond i t ions ,  consider ing t h a t  t h e  a s p e r i t y  s u r f a c e s  g e n e r a l l y  make a n g l e s  

of less than  10 deg. with t h e  mean i n t e r f a c e  plane,  each c o n t a c t  s p o t  

may b e  considered t o  be a small c i r c u l a r  area concen t r i c  w i t h  a h e a t  

channel whose c ros s - sec t iona l  area is  a p r o p o r t i o n a t e  p a r t  of t h e  t o t a l  

i n t e r f a c e  a rea .  A s  t h e  con tac t  p re s su re  i s  inc reased  t h e  a c t u a l  con tac t  

area a l s o  inc reases :  

s p o t s  and, a t  s u f f i c i e n t l y  high c o n t a c t  p r e s s u r e s ,  by an increase i n  

t h e i r  s i z e  a l s o .  It then becomes necessary t o  cons ide r  t h e  mutual 

i n f l u e n c e  of t he  con tac t  s p o t s  [107]. 

f i r s t  by an i n c r e a s e  i n  t h e  number o f  c o n t a c t  

Ce t inka le  and Fishenden [ 2 1 ]  are among t h o s e  who analyzed 

thermal  contact  conductance f o r  t h e  case i n  which c o n t a c t  s p o t s  a r e  of 

equa l  size and u n i f c m l y  distributed throughout the h t e r f a c e .  E e i r  

equat ion f o r  thermal conductance i n c l u d e s  several c o n s t a n t s  which are 

func t ions  of the s u r f a c e  roughness and must be determined experimental ly .  

Their  t heo ry  is d i f f i c u l t  t o  apply because t h e  s u r f a c e  parameters 
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r e q u i r e d  are  n o t  r e a d i l y  obtained [41] .  The p r a c t i c a l i t y  of Laming's 

theory [ 6 8 ] ,  which a l s o  assumes uniformly d i s t r i b u t e d  con tac t  s p o t s  of 

equa l  s i z e ,  i s  l i m i t e d  f o r  s i m i l a r  reasons.  

An o u t l i n e  of t he  type of a n a l y s i s  [18, 21, 39, 681 of metal- 

to-metal  conduction which does not t a k e  s u r f a c e  waviness i n t o  account 

was p re sen ted  by Clausing and Chao [ 2 7 ] .  

number of p a r a l l e l  hea t  channels as desc r ibed  above and shown i n  Figure 4 . 1 .  

The u s u a l  assumptions are 

The model c o n s i s t s  o f  a 

a .  t h e  con tac t  spo t s  a re  c i r c u l a r  areas of 
equa l  s i z e  (r = a ) ,  

b .  t h e r e  a r e  N areas  o f  a c t u a l  c o n t a c t ,  uniformly 
d i s t r i b u t e d  over t h e  e n t i r e  apparent  con tac t  
area (bP); each c o n t a c t  area i s  a s s o c i a t e d  
wi th  a c y l i n d r i c a l  h e a t  flow channel  of r a d i u s  
b = x a ,  

c .  t h e  a s p e r i t i e s  deform p l a s t i c a l l y ,  

d. t h e  r e s i s t a n c e  due t o  s u r f a c e  f i lms  i s  n e g l i g i b l e .  

The above assumptions l e a d  t o  t h e  fol lowing expression f o r  t h e  

i n t e r f a c e  conductance 

where g (x )  i s  a c o n s t r i c t i o n  a l l e v i a t i o n  f a c t o r  given by t h e  series 

g (x )  = 1 - 1.40925 x + 0.29591 x3 + 0.05254 x5 + 0.02105 x7 + ... 

I n  accordance wi th  assumption (c) , t h e  average p res su re  e x e r t e d  between 

a s p e r i t i e s  by a load,  F, equals  t h e  microhardness,  H. Thus, I i f  a i s  

t h e  r a d i u s  of t h e  c i r c u l a r  contact  areas and N i s  t h e  number of such 

areas, w e  have 

F 

NIT a 
H = -  

2 
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Hohm [56a] pointed out  t h a t  t h e  average p res su re  a c r o s s  t h e  a c t u a l  

c o n t a c t  area will b e  smaller than  H ,  because p a r t  o f  t h e  c o n t a c t  area 

w i l l  b e  mere ly  under e las t ic ,  i n s t e a d  of p i a s t i c  s t r a i n  ( s e e  Sec t ion  5.3.2). 
To account for  t h i s  h e  suggested t h a t  H b e  m u l t i p l i e d  by a f a c t o r  6 ,  
which according t o  experiment has values i n  t h e  range 1/3 

Although 6 i s  o f t e n  assumed t o  be u n i t y ,  Holm repor t ed  va lues  as low 

as 0.02 f o r  polished s u r f a c e .  Combining t h e  above two equa t ions  and 

i n t r o d u c i n g  t h e  f a c t o r  5 ,  w e  o b t a i n  t h e  fol lowing expres s ion  f o r  t h e  

i n t e r f a c e  conductance 

5 c 1. 

where 

- ,.b 
I 
t 
1 
I 
8 
I 

Expressions of t h e  form of Eq. ( 4 . 4 ) ,  which assume uniform 

d i s t r i b u t i o n  of c o n t a c t s  ove r  t h e  i n t e r f a c e ,  have sometimes shown good 

agreement with d a t a  obtained wi th  c a r e f u l l y  prepared specimens ; b u t  

they have had l i t t l e  success  i n  p r e d i c t i n g  va lues  of i n t e r f a c e  conductance 

f o r  p r a c t i c a l  s u r f a c e s .  

4.1,2 Theory o f  Fenech and Rohsenow 
One o f  t h e  most thorough analys’es of thermal  c o n t a c t  conduction 

under t h e  assumption t h a t  con tac t  p o i n t s  are of equa l  s i z e  and evenly 

d i s t r i b u t e d  has been made by Fenech and Rohsenow [ 3 7 ,  38, 391. They 

took account of h e a t  t r a n s f e r  by conduction through t h e  con tac t  p o i n t s  

and through a f l u i d  f i l l i n g  t h e  voids .  

con tac t  areas of r ad ius  a, d i s t r i b u t e d  i n  a t r i a n g u l a r  a r r a y .  The 

heat-flow channels of hexagonal c r o s s  s e c t i o n  a s s o c i a t e d  wi th  each 

con tac t  were replaced by c i r c u l a r  c y l i n d e r s  of r a d i u s  b. One such 

The i r  i d e a l i z e d  model cons ide r s  
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, 

Fig .  4.1 - Model of Cy l indr ica l  Heat Channel Associated wi th  a 
Contact Spot. (From Ref. 81.)  
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channel is shown in Figure 4.1. 

transfer could be neglected, no heat is transferred between channels; 
and the theory for one channel is applicable to the entire surface. 

The channel was divided into regions I, I' , and I1 (Figure 4.1) ; and 
the steady-state heat conduction equation, 

Since it was assumed that radial heat 

2 V T - 0 ,  

was solved by neglecting the temperature dependence of the coefficients 

of thermal conductivity and imposing average boundary conditions between 
regions. The result obtained for the contact conductance is 

II 
I 
8 
I 
I 
1 
1 

h 

+ 
1) (:1 + k) + + 1.1 - + 4 .26  & x  

1 62  4.26 &x+ 1 

k2 

6 
6 $ +  1 

-I- 

where 

kl, k2 ,  kf = thermal conductivities of the two solids and 
the interstitial fluid, 

2 n = l/Ta 

x E a/b, 

is the number of contacts per unit area 

and the other quantities are defined in Figure 4.1. 
in the above expression (4 .26 

flow across the metallic contacts; and the first fraction represents 

The second fraction 

x in the numerator) represents the heat 
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I 
8 
I 
I 
I 

+ 62 kl + k2 

( 6 1  - 6 2 )  i k ,  - k2) 

t h e  h e a t  flow a c r o s s  t h e  vo ids ,  One of t h e  approximations made i n  

a r r i v i n g  a t  t h e  above expression l i m i t s  i t s  a p p l i c a b i l i t y  t o  x <0.1 . * 

Simpler expres s ions  f o r  h can be w r i t t e n  i f  c e r t a i n  c r i t e r i a  

are s a t i s f i e d .  I f  t h e  s u r f a c e  s t r u c t u r e s  o r  t h e  thermal c o n d u c t i v i t i e s  

of t h e  s o l i d  materials are s u f f i c i e n t l y  similar, s o  t h a t  

' 4, 

t hen  t h e  thermal conductance can be approximated by t h e  fol lowing 

expres s ion ,  which ag rees  with Eq. 4.5 w i t h i n  5 percen t ,  

6 = 61 + 6 
rl = 2.13 6 G ,  

= e f f e c t i v e  gap h e i g h t ,  2 where 

and k is  t h e  harmonic mean value of thermal conduc t iv i ty :  m 

1 
k m 

When t h e  s u r f a c e  s t r u c t u r e s  o r  thermal c o n d u c t i v i t i e s  d i f f e r  g r e a t l y ,  

such t h a t  

' 5, 
61 k2 

62 kl 

* I n  t h e  l i m i t  of x -+ 0, one expects h t o  be given by h = k f / ( 6 1  + 62); 
y e t  n e i t h e r  Eq. 4.5, nor t h e  approximate forms, Eqs.  4.7 and 4.10, reduce 
t o  t h i s  expres s ion  when x = 0. P o s s i b l y ,  t h i s  is  a consequence of t h e  
a p p l i c a t i o n  of "average" boundary cond i t ions  (between t h e  r eg ions  shown 
i n  F igu re  4.1) i n  t h e  d e r i v a t i o n  of Eq. 4.5. 
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Eq. 4.5 can b e  approximated by 

h -  m 
k 

6 
- + 

(l 122 ) 
where q1 = 2.13 61 6 

When o p e r a t i n g  i n  a vacuum environment o r  when t h e  c o n t a c t  p r e s s u r e  is  

very high,  hea t  conduction through t h e  vo ids  can be neg lec t ed .  

kf = 0 i n  Eq. 4.5, w e  o b t a i n  

S e t t i n g  

2 
X 

2 1 - x  
h =  - . 

(4.10) 

(4.11) 

(4 .12)  

k m 

An approximate c r i t e r i o n  f o r  t h e  v a l i d i t y  of making t h e  above approximation 

i s  [54] 

- 2  kf/km < x /2 

I n  o rde r  t o  eva lua te  Eqs. 4.7, 4.10, o r  4.12 i t  i s  necessa ry  t o  know 

t h e  s u r f a c e  parameters 6 

t h e s e  parameters i s  descr ibed i n  Refs. 3 8  and 39, and an analog computer 

technique is  descr ibed i n  Ref. 54. While t h e  g r a p h i c a l  method can b e  

l ea rned  by a competent draftsman, i t  i s  t e d i o u s  and time-consuming. 

analog method, though much less time-consuming, r e q u i r e s  t h e  assembly 

. 
62,  n, and x. A g r a p h i c a l  method of determining 1' 

The 

of s p e c i a l  instrumentat ion.  

rnL llle values of t h e  s u r f a c e  parameters are dependent upon t h e  

c o n t a c t  pressure.  I n  Refs. 38, 39, and 5 4 ,  each set of  parameters w a s  

a s s o c i a t e d  with an apparent  con tac t  p re s su re  by assuming t h a t  t h e  peaks 

of t h e  s o f t e r  s u r f a c e  deform p l a s t i c a l l y .  Th i s  w a s  based on Moore's 
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obse rva t ion  [821 t h a t  a s p e r i t i e s  of t h e  s o f t e r  of two metal s u r f a c e s  

p re s sed  t o g e t h e r  undergo f u l l  p l a s t i c  deformation wh i l e  t h e  peaks of 

t h e  h a r d e r  metal become embedded i n  t h e  s o f t e r  su r f ace .  From t h i s  i t  

fo l lows  t h a t  t h e  apparent con tac t  p r e s s u r e  i s  

2 
Pap = H x 9 

where H i s  t h e  y i e l d  p re s su re  of t h e  s o f t e r  metal. 

measured wi th  a microhardness test, such as t h e  Vickers o r  Knoop tests. 

S ince  measured va lues  of H depend on t h e  s i z e  of t h e  i n d e n t a t i o n ,  one 

should u s e  a va lue  corresponding t o  an i n d e n t a t i o n  t h e  s i z e  of which 
2 equa l s  t h e  average con tac t  area x /n. When t h e  va lue  of H is  n o t  

a v a i l a b l e ,  i t  can b e  approximated by 3 t i m e s  t h e  y i e l d  stress [39] .  

The v a l u e  of H can be 

H = 3Y. 

( 4 . 1 3 )  

(4.14) 

Th i s  deformation theo ry  y i e l d s  t h e  r e l a t i o n  of con tac t  conductance t o  

p r e s s u r e  only f o r  t h e  i n i t i a l  l oad ing  of a j o i n t .  I n  t h e  presence of 

h y s t e r e s i s  due t o  cycl ing loading, i t  would be necessary t o  cons ide r  

e l a s t i c  deformation i n  add i t ion  t o  p l a s t i c  deformation. 

A modi f i ca t ion  of t h e  deformation model a p p l i c a b l e  t o  c r y s t a l l i n e  

materials ( s p e c i f i c a l l y ,  g raph i t e )  i s  considered i n  Ref. 3 7 .  

Experimental v e r i f i c a t i o n  of t h e  above t h e o r e t i c a l  model and 

t h e  methdds of determining s u r f a c e  parameters w a s  ob ta ined  [38,54] under 

a few cond i t ions  involving e s s e n t i a l l y  f l a t  su r f aces .  

t h e  good agreement between theory and experiment f o r  a c o n t a c t  between 

t h e  end faces of a rod of Armco i r o n  and a rod of aluminum. The 

procedure can be extended t o  w a v y  s u r f a c e s ;  b u t ,  a s i d e  from s c a n t  r e fe rences ,  

n o  information on such a p p l i c a t i o n s  w a s  found i n  t h e  l i t e r a t u r e .  

Figure. 4.2 shows 
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4.1.3 Theory o f  M i  k i c  and Rohsenow 

8 
1 
I 
8 
8 
8 
1 
I 

Based on an  a n a l y s i s  which assumes t h a t  each con tac t  p o i n t  con- 

sists of two hemispherical  a s p e r i t i e s  i n  symmetric c o n t a c t ,  Mikic and 

Rohsenow [76] found t h a t  t h e  a c t u a l  c o n t a c t  area may b e  approximated by 

t h e  r a t i o  of load t o  microhardness f o r  non-wavy metallic s u r f a c e s  under 

apparent  con tac t  p r e s s u r e s  between 130 l b / i n  2 and 15,000 l b / i n 2 .  The thermal 

c o n t a c t  conductance f o r  rough, nominally f l a t  s u r f a c e s  having uniformly 

d i s t r i b u t e d  con tac t  s p o t s  is then given by t h e  expres s ion  

ah 16/17 
Em t a n  e = 0.9(+) 

where CI i s  t h e  r o o t  mean square d e v i a t i o n  of s u r f a c e  he igh t  (measured 

from t h e  mean plane) and i s  the mean of t h e  a b s o l u t e  v a l u e s  of t h e  s l o p e s  

of t h e  s u r f a c e  s t r u c t u r e .  Consideration of t h e  symmetric model showed t h a t  

approximating t h e  a c t u a l  contact  area by F/H y i e l d s  somewhat low va lues  

a t  low p res su res ;  and, because of work hardening of t h e  materials i n  

c o n t a c t ,  h igh  va lues  o f  c o n t a c t  area are p r e d i c t e d  a t  very high p r e s s u r e s .  

if t h e  same value of hardness  is used throiighout. Consequently, t h e  

v a l u e s  of thermal con tac t  conductance p r e d i c t e d  by Eq. 4.15 might be 

expected t o  be somewhat low a t  low p res su res  and t o o  high a t  very 

hi,gh p res su res .  * Nonetheless,  as  shown i n  Fig-. 4 .3 ,  experimental  d a t a  

f o r  nominally f l a t  s t a i n l e s s  s t e e l  specimens having va r ious  roughnesses 

(a = 42 u in .  t o  340 u in . )  showed good agreement wi th  Eq. 4.15. 

Espec ia l ly  a t  low p res su res ,  t h e  c o n t a c t  p o i n t s  might no t  be 

uniformly d i s t r i b u t e d ,  and t h e  i n f l u e n c e  on conductance would be t h e  same 

as t h a t  of an equ iva len t  su r f ace  waviness. 

waviness showed t h a t  i t  i s  r e l a t i v e l y  s i g n i f i c a n t ,  e s p e c i a l l y  a t  low 

p r e s s u r e s ,  with a tendency t o  diminish i n  importance as t h e  p r e s s u r e  i s  

inc reased .  

An a n a l y s i s  of t h e  e f f e c t  of 
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Fig.  4.3 - Comparison o f  Contact  Conductance Theory w i t h  

Experiment According t o  Ref. 76. 
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4.1.4 Theory o f  Shlykov and Ganin 

Shykov and Ganin [92] developed a reasonably s imple procedure 

f o r  computing thermal con tac t  r e s i s t a n c e  which, a l though i t  does no t  

t a k e  s u r f a c e  waviness i n t o  account, had good agreement w i t h  experimental  

d a t a  ob ta ined  both i n  a i r  and i n  a vacuum.* It w a s  assumed t h a t  h e a t  

is  t r a n s f e r r e d  a c r o s s  an i n t e r f a c e  only by conduction through areas 

of a c t u a l  con tac t  and through the medium f i l l i n g  t h e  i n t e r s t i c e s ,  t h e  

l a t t e r  c o n t r i b u t i o n  being neg lec t ed  f o r  vacuum environments. 

r e s i s t a n c e  of t h e  i n t e r s t i t i a l  f l u i d  w a s  approximated by t h e  expres s ion  

The thermal  

Rf = 6 /k (See f o o t n o t e  *J; )  
f f '  

where 

6f (6rl + 6,,)/2, t h e  average h e i g h t  of t h e  f l u i d  l a y e r ,  

6r2 = average h e i g h t s  o f  microroughnesses on t h e  two s u r f a c e s ,  
' r l s  

kf = thermal conduc t iv i ty  of t h e  f l u i d .  

The expres s ion  de r ived  f o r  t h e  thermal  r e s i s t a n c e  of t h e  metall ic c o n t a c t s  

i s  

where 

A = a c t u a l  c o n t a c t  area, 

A = apparent  contact  area, 
aP  
r = r a d i u s  of con tac t  s p o t s ,  

(4.16) 

(4.17) 

and 

k = 2k k /(kl  +k2) = reduced thermal c o n d u c t i v i t y  of metals 
1 and 2 j o i n e d  a t  t h e  i n t e r f a c e .  m 1 2  

* See a l s o  Refs. 90, 91, and 93. 

** Ref. 4 1  sugges t s  t h a t  a good approximation of 6f  f o r  a i r  i s  

6f  = 0.64 (61t + 62t) 

where 6 1 t ,  62t are t h e  rms values  of i r r e g u l a r i t y  (roughness p l u s  waviness) 
f o r  t h e  two su r faces .  It i s  i n d i c a t e d  t h a t  t h e  f a c t o r  0.64 has  d i f f e r e n t  
v a l u e s  f o r  o t h e r  gases.  Note t h a t  s u r f a c e  waviness i s  taken i n t o  account 
by t h i s  d e f i n i t i o n  of 6 ,  but i t  i s  necessary that t h e  waviness no t  exceed 
t h e  c a p a b i l i t i e s  of t h e  instruments  a v a i l a b l e  f o r  measuring 6 

t' 
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I n  de r iv ing  t h e  above expres s ion  i t  w a s  assumed t h a t  t h e  a c t u a l  c o n t a c t  

occurs  a t  c i r c u l a r  areas of equa l  s i z e ,  uniformly d i s t r i b u t e d  ove r  t h e  

i n t e r f a c e .  Based on d a t a  i n  Ref. 18, t h e  r a d i u s  of t h e  c i r c u l a r  areas 

w a s  assumed t o  be 3 x low5 m. 

t a c t  a r ea ,  t h e  stress developed over t h e  i n d i v i d u a l  c o n t a c t  areas w a s  

assumed t o  be t h a t  corresponding t o  p l a s t i c  deformation and w a s  se t  

equa l  t o  3 times t h e  u l t i m a t e  s t r e n g t h  of t h e  s o f t e r  material. Thus 

To o b t a i n  an estimate of t h e  a c t u a l  con- 

* 

U 
A = F/3S 

F = normal load  on t h e  i n t e r f a c e ,  where 

and S = u l t i m a t e  s t r e n g t h .  

Since the  r e s i t a n c e s  of m e t a l l i c  c o n t a c t s  and t h e  i n t e r s t i t i a l  f l u i d  are 

i n  p a r a l l e l ,  t h e  t o t a l  r e s i s t a n c e ,  R, i s  r e l a t e d  t o  them as fo l lows  

U 

Shlykov and Ganin [92]  compared computations according t o  t h e  above 

- 8  
I 
8 
I 
8 
I 

I 
I 

(4.1 gi 
I 

(4.18 I 

theory wi th  experimental  measurements on s t ee l ,  s t a i n l e s s  steel ,  duralumin, 

and copper, a t  c o n t a c t  p re s su res  up t o  7000 l b / i n  . Most of t h e  measure- 

ments were made i n  a i r  a t  atmospheric p r e s s u r e ,  b u t  some were made i n  a 

vacuum environment. On t h e  whole, t h e  agreement between theo ry  and 

experiment w a s  q u i t e  good. The measurements showed t h a t  i n c r e a s e  i n  

con tac t  p r e s s u r e  causes  l i t t l e  change i n  t h e  thermal r e s i s t a n c e  c o n t r i b u t e d  

by t h e  i n t e r s t i t i a l  f l u i d  and t h a t  most of t h e  dec rease  

r e s i s t a n c e  caused by i n c r e a s i n g  c o n t a c t  p r e s s u r e  is due t o  an  i n c r e a s e  i n  

t h e  actual  c o n t a c t  area. 

j o i n t  i n  a helium environment showed t h a t  t h e  f l u i d  conductance w a s  

dominant i n  t h i s  case;  and t h e  t o t a l  c o n t a c t  r e s i s t a n c e  w a s  t h e r e f o r e  

not  only lower than it  is  i n  a i r ,  b u t  a l s o  p r a c t i c a l l y  Independent of 

con tac t  p r e s s u r e .  

* For metals having a high degree of cold work, such as copper,  t h e  f a c t o r  

2 

i n  o v e r a l l  

An i n t e r e s t i n g  set of experiments on a steel 

3 should b e  r ep laced  by 5 according t o  Ref. 92. 
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4.2 Macroscopic Constriction Theory 

Clausing and Chao [ 2 7 ]  po in t  out  t h a t  uniform d i s t r i b u t i o n  

of a c t u a l  c o n t a c t  areas would e x i s t  only i f  t h e  s u r f a c e s  were i d e a l  

mating p a i r s .  

l a rge - sca l e  c o n s t r i c t i o n s  t o  heat flow are p resen t  and o f t e n  dominate 

t h e  thermal c o n t a c t  r e s i s t a n c e .  

a model t h a t  d i v i d e s  t h e  apparent c o n t a c t  area i n t o  a contact region, 
where t h e  d e n s i t y  of microscopic c o n t a c t  areas is  high,  and a noncontact 
r eg ion  which con ta ins  few o r  no microcontacts .  The model, as a p p l i e d  t o  

c y l i n d e r s  having end s u r f a c e s  which a r e  s e c t o r s  of sphe res ,  is i l l u s t r a t e d  

i n  Figure 4.4. 

of r a d i u s  a 

r e g i o n  of r ad ius  a Since t h e  h e a t  i s  f i r s t  c o n s t r i c t e d  t o  flow w i t h i n  

t h e  macroscopic c o n t a c t  a r e a  and then  t o  t h e  microscopic c o n t a c t s  and 

f i n a l l y  must flow through su r face  f i lms  a t  t h e  i n t e r f a c e ,  t h e  t o t a l  con tac t  

r e s i s t a n c e  is  given by t h e  following series combination* 

Since such i d e a l  c o n t a c t s  do no t  e x i s t  i n  p r a c t i c e ,  

To account f o r  t h i s  e f f e c t ,  they propose 

Actual c o n t a c t  occurs only a t  microscopic con tac t  areas 

uniformly d i s t r i b u t e d  w i t h i n  t h e  c e n t r a l  macroscopic con tac t  
S' 

L' 

R t  = + Rs + Ro, (See Footnote **) (4.20) 

where t h e  s u b s c r i p t s  t ,  L, s ,  and o r e f e r  t o  t h e  t o t a l ,  macroscopic, 

microscopic ,  and f i l m  con t r ibu t ions ,  r e s p e c t i v e l y .  

Assuming c l e a n  su r faces  ( R  = 0) and e f f e c t i v e l y  p e r f e c t  
0 

c o n t a c t  over t h e  macroscopic contact  area ( R  

de r ived  f o r  t h e  macroscopic c o n s t r i c t i o n  r e s i s t a n c e  is  

<< RL) ,  t h e  expres s ion  
S 

2 -' - 
aL km IT b, h, % =  

L L  

(See Footnote **) (4.21) 

*The ques t ion  whether i t  is  reasonable t o  assume t h a t  RL and Rs are 
independent r e s i s t a n c e s  i n  series i s  considered i n  R e f s .  23 and 24; 
and i t  i s  concluded t h a t  n e g l i g i b l e  e r r o r  i s  encountered i n  doing s o ,  

t h a t  t h e i r  u n i t s  are (hr  'F/Btu). 
**Following Ref. 27, thermal r e s i s t a n c e s  i n  Sec t ion  4.2 are so  def ined 
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Fig. 4.4 - Model of Contact Surface f o r  Macrosco i c  
Constriction Theory. (From Ref. 27. P 
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where g(x> i s  t h e  c o n s t r i c t i o n  a l l e v i a t i o n  f a c t o r  g iven  by Eq.  4.2 and 

h i s  found from t h e  Bio t  modulus, which i s  def ined  as t h e  r a t i o ,  

bL/ALm, of a c h a r a c t e r i s t i c  length ,  bL, t o  t h e  q u a n t i t y  ALm = h /k 
AL can be  i n t e r p r e t e d  as t h e  effect ive a d d i t i o n a l  l e n g t h  of t h e  con tac t  

members t h a t  would produce t h e  same h e a t  f low r e s i s t a n c e  as t h e  con tac t .  

The formula found f o r  t h e  B io t  modulus, v a l i d  f o r  xL = aL/bL < 0.65, i s  

L 

L m *  

m 

where 

5 = e la s t i c  conformity modulus = (pa/Em)(bL/dt), 

dt  = t o t a l  equ iva len t  f l a t n e s s  d e v i a t i o n  (based on 

zero  load)  = d + d2 ( s e e  Footnote  *), 1 
2 

= apparent  con tac t  p r e s s u r e  = F/.rrbL . 

( 4 . 2 2 )  

' (4 .23)  

The requirement,  x < 0.65,  l i m i t s  a p p l i c a b i l i t y  of t h e  above theory  t o  

moderate apparent  pressures .  For example [106],  f o r  aluminum s u r f a c e s  

having  a f l a t n e s s  d e v i a t i o n  of 100 p in .  and a waviness wavelength equa l  

t o  1 in . ,  t h e  maximum apparent  p r e s s u r e  f o r  which t h e  above theory  i s  

a p p l i c a b l e  is  60 l b / i n  . The range o f  a p p l i c a b i l i t y  i n c r e a s e s  as t h e  

f l a t n e s s  d e v i a t i o n  and modulus of  e l a s t i c i t y  increase 

o f  waviness decreases .  

L 

2 

and as t h e  p i t c h  

~ ~~ ~~~ 

*In Ref. 2 3 ,  Clausing p o i n t s  ou t  t h a t  t h e  model of s p h e r i c a l  con tac t ing  
s u r f a c e s  exaggera tes  t h e  f l a t n e s s  d e v i a t i o n  and t h a t  t h e r e f o r e  dt  should 
probably be  r ep laced  by f o u r  t i m e s  t h e  measured va lue  when t h e  theory  is  
app l i ed  t o  a c t u a l  engineer ing su r faces .  The reasons  f o r  choosing t h e  
f a c t o r  f o u r  are n o t  given. 
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The mathematical d e r i v a t i o n  involved t h e  approximation t h a t  

t h e  Poisson r a t i o  of both members equa l s  J6TT, which i s  n e a r l y  t r u e  f o r  

most metals. Another approximation l i m i t s  a p p l i c a t i o n  t o  specimens 

having a large length-to-diameter r a t i o .  Analog measurements [ 2 5 ] r  

however, i n d i c a t e d  t h a t  i t  may b e  reasonable  t o  apply t h e  r e s u l t s  f o r  

L/bL as low as  0.6. The mathematical  d e r i v a t i o n  a l s o  involved use of 

Her t z ' s  determinat ion [ loo]  of t h e  con tac t  area between two sphe res  

i n  e las t ic  contact .  

a p p l i c a t i o n  a r e  given i n  Ref. 2 3 ,  where i t  i s  mentioned t h a t  a n  ex tens ion  

of H e r t z ' s  a n a l y s i s  t h a t  w i l l  remove i t s  r e s t r i c t i o n s  is  under way. 

gives  a numerical a n a l y s i s  which l e a d s  t o  a refinement of t h e  above theory,  

I 
1 
I Limi ta t ions  of H e r t z ' s  s o l u t i o n  f o r  t h e  p re sen t  

Ref. 22 

r e l a x i n g  some of t h e  r e s t r i c t i o n s  on 

a n a l y s i s  are a l s o  given i n  Ref. 2 6 .  

and L/bL. The r e s u l t s  of t h i s  

When app l i ed  t o  t h e  geometry i n  Figure 4 . 4 ,  Eq. 4 . 3  l e a d s  t o  

t h e  fol lowing expres s ion  f o r  t h e  component of i n t e r f a c e  conductance 

a s s o c i a t e d  with t h e  microscopic c o n s t r i c t i o n  

Some experimental  confirmation of t h e  above theo ry  w a s  obtained.  Tests 

w e r e  performed under vacuum wi th  aluminum, b r a s s ,  magnesium, and s t a i n -  

less s t e e l  samples having ends po l i shed  and lapped t o  s p h e r i c a l  shape, 

conforming with t h e  model i n d i c a t e d  i n  Figure 4 . 4 .  

f l a t n e s s  dev ia t ions ,  d,, ranged from 25 t o  820 u in .  

temperatures i n  d i f f e r e n t  tests ranged from 160 t o  3 4 0 ° F ,  and t h e  

The equ iva len t  

The mean i n t e r f a c e  

- 

8 
I 
1 
1 
8 
I 

( 4 . 2 4 )  

I 
I 
I 

z 
con tac t  pressure was v a r i e d  between 0 and 100 l b / i n  . The d a t a  w e r e  corre-  

l a t e d  i n  terms of t h e  parameters Ai, /b 
m L  

Good agreement between theroy and experiment w a s  ob ta ined  i n  a l l  cases 

except t hose  i n  which f i l m  r e s i s t a n c e  o r  thermal s t r a i n  may have been 

important f a c t o r s .  

macroscopic c o n s t r i c t i o n  e f f e c t  and t h e  use fu lness  of t h e  model i n  

and 5 and are p l o t t e d  i n  Figure 4 . 5 .  

The d a t a  c l e a r l y  demonstrate t h e  s i g n i f i c a n c e  of t h e  
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Yovanovich [lo61 examined t h e  problem of thermal con tac t  

conductance i n  a vacuum f o r  s u r f a c e s  having roughness and e i t h e r  c y l i n d r i c a l  

o r  s p h e r i c a l  waviness. 

ana lyses  f o r  e i t h e r  pu re ly  p l a s t i c  o r  pu re ly  e l a s t i c  deformation. 

on ear l ier  work i n  t h e  f i e l d  he assumed t h a t  t h e  a s p e r i t i e s  deform 

p l a s t i c a l l y  and e l a s t i c a l l y  and t h a t  t h e  waviness component deforms 

e l a s t i c a l l y  f o r  l i g h t  loads and e l a s t i c a l l y  and p l a s t i c a l l y  f o r  very 

h igh  p res su res .  

H e  neglected r a d i a t i o n  and used deformation 

Based 

A r e c e n t  re-analysis  of t h e  c o n s t r i c t i o n  r e s i s t a n c e  w a s  made 

by Greenwood 1501. 
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5. PROPERTIES OF SURFACES 

5.1 Surface Structure 

Surface t e x t u r e  may be regarded as having several components: 

roughness, waviness, and e r r o r  of form, as i l l u s t r a t e d  i n  Fig.  5.1. 

Prof i lometer  traces of s u r f a c e  s t r u c t u r e ,  i n  which t h e  magn i f i ca t ion  

perpendicular  t o  t h e  s u r f a c e  is  u s u a l l y  about 50 times t h e  magn i f i ca t ion  

p a r a l l e l  t o  the s u r f a c e ,  have sometimes c r e a t e d  t h e  impression t h a t  

s u r f a c e  asperities have s t e e p  w a l l s .  Ac tua l ly ,  t h e  wavelengths of t h e  

i r r e g u l a r i t i e s  of both roughness and waviness a re  much g r e a t e r  t han  

t h e i r  amplitudes.  Consequently, a c t u a l  c o n t a c t  between two s u r f a c e s  

occurs  over a ve ry  small f r a c t i o n  of t h e  i n t e r f a c e  area, o f t e n  less 

than  1 percent .  

D i r e c t i o n a l  methods of mechanical s u r f a c e  processing g i v e  r i se  

t o  a d i r e c t i v i t y ,  o r  l a y ,  i n  t h e  d i s t r i b u t i o n  and form of s u r f a c e  pro- 

j e c t i o n s .  The t h r e e  main types  of s u r f a c e  p r o f i l e s  i n  t h i s  category 

correspond t o  t u r n i n g ,  g r ind ing ,  and bu f f ing .  Nond i rec t iona l  processing . 

methods, such a s  e l e c t r o p o l i s h i n g ,  anodizing,  and l app ing ,  r e s u l t  i n  

d i s t r i b u t i o n s  of p r o j e c t i o n s  having no p r e f e r r e d  d i r e c t i o n  p a r a l l e l  t o  

t h e  su r face .  

One of t h e  most common instruments  used t o  s tudy  t h e  topography 

of s u r f a c e s  i s  t h e  p r o f i l o m e t e r ,  i n  which a s t y l u s  t r a v e r s e s  t h e  s u r f a c e  

and g i v e s  a l i n e  s e c t i o n  of t h e  contour.  Other mechanical and o p t i c a l  

techniques f o r  s tudying t h e  topography and s t r u c t u r e  of s o l i d  s u r f a c e s  

are l i s t e d  and desc r ibed  b r i e f l y  i n  Ref. 83a (p 705 f f ) .  

Measures of roughness inc lude  t h e  c e n t e r l i n e  average (CLA), a lsc  

known as a r i t h m e t i c  average (AA), and r o o t  mean squa re  (RMS); t h e  la t ter  

g ives  more weight t o  t h e  l a r g e r  d e v i a t i o n s  from t h e  c e n t e r l i n e  and is 

t h e r e f o r e  somewhat l a r g e r  than t h e  former. Values of roughness can range 

f rom 2 p in .  r m s  f o r  ve ry  smooth s u r f a c e s  t o  600 p in .  r m s  f o r  t h e  roughest  

s u r f a c e s  [107].  Fig.  5.2 i l l u s t r a t e s  t h e  ranges of roughness f o r  d i f f e r -  

e n t  methods of s u r f a c e  f i n i s h i n g .  

36 

%??IF, FRANgLIN INSTITUTE RESEARCH LABORATORIES 
i 



SURFACE 

. . . .  . . .  . . . . . . .  . . . . . .  . . . . .  .. 
. . . . . . . . . .  . . . .  . . .  . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . .  ' c .  .. 

. . . . . . .  . .  . . .  . - " . .  . . . .  . . . . . . . . .  . . .  . . . . . . .  . . . . .  * . . . . . .  . .  . . . . . . . . . .  

. . .  . . . . . .  . . . .  . .  . . .  . .  * . . a .  

. . . . . . .  . . . . .  .. . , . . -  . . . . . . . . .  , ,  . . * .  . . " . . .  . . . . . . .  . .  * . . -  
e .  

-. - . .  
. . .  : * .  . . . . . .  

. .  . .  
. . . . . .  . .  . 

ROUGHNESS 

I WAVINESS 

ERROR OF FORM 

Fig. 5.1 - Relationship Between Surface Roughness, Waviness, 
and Error of Form. (From Ref. 88.) (Vertical 
magnification much greater than horizontal magnification.) 
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I Surface Finish,  rrns(pin.) 

Contour sowing 

Disk qinding,filing 

Milling(high-speed s t e e l ) - l B / r / / n I  I 

Commercial R e o m i n g ~ 1 3 z /  grinding - 
Filing, hond finishing 
Milling (carbides) 

Diamond turning 

Precision finish grinding 

a Full range commercially used. 
e23 Usual overage or economical range. 

Fig. 5.2 - Relation Between Basic Finishing Processes and Ranges 
of Surface Roughness. 
Surface Fineness for Five Basic Materials (These limits 
do no relate to processes listed opposite them in left 
column). (From Ref. 49a. ) 

Inset Shows Maximum Practical 
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Fig. 4.5 - Comparison Between Macroscopic Constriction Theory 
and Experiment. (From Ref. 23 . )  
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p r e d i c t i n g  thermal c o n t a c t  r e s i s t a n c e  when t h i s  e f f e c t  i s  dominant and 

t h e  geometry of s p h e r i c a l  s u r f a c e s  i n  c o n t a c t  i s  a p p l i c a b l e .  

shortcoming of t h e  model i n  i t s  p resen t  form i s  t h e  l i m i t a t i o n  t o  a 

s i n g l e  macroscopic con tac t .  I n  Ref. 2 7 ,  t h e  a u t h o r s  i n d i c a t e d  t h a t  an 

ex tens ion  t o  mul t i r eg ion  c o n t a c t  w a s  under s tudy.  

An obvious 

E f f o r t s  by o t h e r s  t o  apply Clausing 's  t heo ry  have n o t  been ve ry  

f r u i t f u l .  Fried [ 4 7 ]  had l i t t l e  success  i n  a t t empt ing  t o  c o r r e l a t e  thermal  

conductance data  according t o  t h e  method of Clausing and Chao [25] .  

Bloom [13] reviewed t h e  macroscopic c o n s t r i c t i o n  theory of Clausing and 

Chao [ 2 5 ]  and compared i t  with experimental  da t a .  H e  found d e v i a t i o n s  

and suggested Aeveral p o s s i b l e  d e f i c i e n c i e s  of t h e  theory.  

showed evidence of a s t r o n g  i n f l u e n c e  due t o  t h e  degree of conformity of 

specimens having several macroscopic c o n t a c t  areas, when mated i n  

d i f f e r e n t  r e l a t i v e  o r i e n t a t i o n s .  A theo ry  capab le  of a p p l i c a t i o n  t o  such 

s i t u a t i o n s  would be more u s e f u l  t han  Clausing 's  theory.  

i r r e g u l a r i t y  and o€ten undeterminable n a t u r e  of waviness f o r  many types of 

s u r f a c e s ,  however, a c c u r a t e  p r e d i c t i o n  of conductance f o r  such cases 

may b e  impossible  

H i s  experiments 

Because of t h e  

4.3 Other Analyses of Heat Transfer Across an Interface 

Using an e lectr ical  analog,  Padet and Cordier  [86] analyzed 

t h e  temperature d i s t r i b u t i o n  i n  t h e  v i c i n f t y  of a c o n t a c t  f o r  t h e  type  

of model shown i n  Figure 4.1 From i t s  maximum va lue ,  which is  cons t an t  

over t h e  area of a c t u a l  c o n t a c t ,  t h e  temperature  drops wi th  r a d i a l  

d i s t a n c e  i n  an almost hype rbo l i c  manner. 

exceeded t h e  value i t  would have f o r  a p e r f e c t  c o n t a c t  w i t h i n  a d i s t a n c e ,  

from t h e  c e n t e r  of a con tac t ,  t h a t  depends on t h e  thermal  p r o p e r t i e s  of 

t h e  materials and t h e  h e i g h t  and s e p a r a t i o n  of a s p e r i t i e s .  

d i s t a n c e s  from the c e n t e r  of t h e  con tac t  area t h e  temperature  w a s  

s l i g h t l y  lower than  t h e  v a l u e  f o r  p e r f e c t  c o n t a c t .  Computations showed 

t h a t  t h e  phenomenon e x i s t s  i n  a vacuum as w e l l  as i n  t h e  presence of an 

i n t e r s  t it  i a l  f l u i d  . 

It w a s  found t h a t  t h e  temperature  

A t  g r e a t e r  
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Yovanovich [lo61 examined t h e  problem of thermal con tac t  

conductance i n  a vacuum f o r  s u r f a c e s  having roughness and e i t h e r  c y l i n d r i c a l  

o r  s p h e r i c a l  waviness. 

ana lyses  f o r  e i t h e r  pu re ly  p l a s t i c  o r  pu re ly  e l a s t i c  deformation. Based 

on earlier work i n  t h e  f i e l d  h e  assumed t h a t  t h e  a s p e r i t i e s  deform 

p l a s t i c a l l y  and e l a s t i c a l l y  and t h a t  t h e  waviness component deforms 

e l a s t i c a l l y  f o r  l i g h t  loads and e l a s t i c a l l y  and p l a s t i c a l l y  f o r  very 

h igh  p res su res .  

H e  neglected r a d i a t i o n  and used deformation 

A r e c e n t  r e -ana lys i s  of t h e  c o n s t r i c t i o n  r e s i s t a n c e  was made 

by Greenwood [50]. 
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5. PROPERTIES OF SURFACES 

5.1 Surface Structure 

Surface t e x t u r e  may be regarded as having several components: 

roughness, waviness, and e r r o r  of form, as i l l u s t r a t e d  i n  Fig.  5.1. 

P ro f i lome te r  t r a c e s  of s u r f a c e  s t r u c t u r e ,  i n  which t h e  magn i f i ca t ion  

perpendicular  t o  t h e  s u r f a c e  is  u s u a l l y  about 50 t i m e s  t h e  magn i f i ca t ion  

p a r a l l e l  t o  t h e  s u r f a c e ,  have sometimes c r e a t e d  t h e  impression t h a t  

s u r f a c e  a s p e r i t i e s  have s t e e p  w a l l s .  Ac tua l ly ,  t h e  wavelengths of t h e  

i r r e g u l a r i t i e s  of both roughness and waviness are much g r e a t e r  t han  

t h e i r  amplitudes.  Consequently, a c t u a l  c o n t a c t  between two s u r f a c e s  

occur s  over a ve ry  s m a l l  f r a c t i o n  of t h e  i n t e r f a c e  area, o f t e n  less 

than  1 percent .  

D i r e c t i o n a l  methods of mechanical s u r f a c e  processing g i v e  r ise 

t o  a d i r e c t i v i t y ,  o r  l a y ,  i n  t h e  d i s t r i b u t i o n  and form of s u r f a c e  pro- 

j e c t i o n s .  

correspond t o  t u r n i n g ,  g r ind ing ,  and bu f f ing .  Nondirect ional  p rocess ing  

methods, such a s  e l e c t r o p o l i s h i n g ,  anodizing,  and l app ing ,  r e s u l t  i n  

d i s t r i b u t i o n s  of p r o j e c t i o n s  having no p r e f e r r e d  d i r e c t i o n  paral le l  t o  

t h e  su r face .  

The t h r e e  main types of s u r f a c e  p r o f i l e s  i n  t h i s  ca t egory  

One of t h e  most common ins t rumen t s  used t o  s tudy  t h e  topography 

of s u r f a c e s  i s  t h e  p ro f i lome te r ,  i n  which a s t y l u s  t r a v e r s e s  t h e  s u r f a c e  

and g i v e s  a l i n e  s e c t i o n  of t h e  contour.  Other mechanical and o p t i c a l  

techniques f o r  s tudying t h e  topography and s t r u c t u r e  of s o l i d  s u r f a c e s  

are l i s t e d  and descr ibed b r i e f l y  i n  Ref. 83a (p 705 f f ) .  

Measures of roughness i n c l u d e  t h e  c e n t e r l i n e  average ( C i s ) ,  a i s o  

known as a r i t h m e t i c  average (AA), and r o o t  mean squa re  (RMS); t h e  l a t te r  

g i v e s  more weight t o  t h e  l a r g e r  d e v i a t i o n s  from t h e  c e n t e r l i n e  and is  

t h e r e f o r e  somewhat l a r g e r  t han  t h e  former. Values of roughness can range 

from 2 pin.  r m s  f o r  very smooth s u r f a c e s  t o  600 p in .  r m s  f o r  t h e  roughest  

s u r f a c e s  [IO?]; Fig. 5.2 illustrates Lhe ranges of roughness f o r  d i f f e r -  

e n t  methods of s u r f a c e  f i n i s h i n g .  
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ROUGHNESS 

I WAVINESS 

ERROR O F F O R M  

Fig. 5.1 - Relationship Between Surface Roughness, Waviness, 
and Error of Form. (From Ref. 88.) (Vertical 
magnification much greater than horizontal magnification.) 
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I Surface Fin i sh ,  rms(pin.)  

-4 Aluminum 
4 

&ass 
4 

Cost iron 
4 

Soft steel 
-l-- 4 

Hardened styel 
I I I I I  

Filing, hand finishing 

Roller burnish in 
Diamond turning 

Precision finish grinding 
Polishing or buffing 

0 Full range commercially used. 
Pza Usual average or economical range. 

F i g .  5 . 2  - Relation Between Basic Finishing Processes and Ranges 
o f  Surface Roughness. 
Surface Fineness f o r  Five Basic Materials (These limits 
do no relate t o  processes l is ted opposite them in l e f t  
column). (From Ref. 49a. ) 

Inset Shows Maximum Practical 

8 
I 
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Sur face  waviness can r e s u l t  from imper fec t ions  i n  t h e  s u r f a c e  

f i n i s h i n g  process  (such as v i b r a t i o n  and c h a t t e r  during machining),  from 

d e f l e c t i o n s  produced during assembly of f a b r i c a t e d  p roduc t s ,  and from 

h e a t  t r ea tmen t  stresses. According t o  Ref. 107, t h e  l e n g t h  of s u r f a c e  

waves varies from 0.04 t o  0.40 in .  and t h e i r  h e i g h t  var ies  acco rd ing ly  

from 80 t o  1600 p in .  

t h e  f i e l d  of metal f i n i s h i n g  was r e p o r t e d  [411 t o  be t h a t  t h e  waviness 

of a s u r f a c e  is  dependent on s o  many parameters t h a t  a c o r r e l a t i o n  

between waviness and roughness f o r  a given f i n i s h i n g  o p e r a t i o n  i s  im- 
p o s s i b l e .  

i t .  

The consensus of opinion of several e x p e r t s  i n  

The only way t o  ob ta in  an estimate of waviness is  t o  measure 

Real s u r f a c e s  c o n t a i n  many imper fec t ions  and i m p u r i t i e s .  The 

schematic diagram of a t y p i c a l  pol ished metal s u r f a c e  i n  Fig.  5.3 shows 

how d e v i a t i o n s  from s t r u c t u r a l  and topographical  un i fo rmi ty  i n c r e a s e  as 

t h e  f r e e  s u r f a c e  is  approached. On t o p  of t h e  base  metal sub-surface 
t h e r e  i s  a poZish l a y e r  which is an  "amorphous fudge" of metal, metal 

oxide,  p o l i s h i q g  powder, and contaminants t h a t  were p r e s e n t  when t h e  

s u r f a c e  w a s  prepared. Over t h i s  t h e r e  is  an oxide f i l m  which may be 

f a i r l y  uniform o r  i n  t h e  form of i r r e g u l a r  need le s .  F i n a l l y ,  t h e r e  is  

a l a y e r  of adsorbed gases ,  including oxygen and water vapor. 

. -  
MX Oxide ca 0.01 to 0.1 micron Iw Polish or Bsilby layer 0.1 micron 

W S e v e r e  deformation 1-2 microns \\\Gross deformation 5- 10 microns 

\ \ Minor deformation 20-50 microns 

F ig .  5.3 - Schematic Diagram Showing Topography and Structure of 
a Typical Polished Metal Specimen. 
Heavy Surface Deformation, the Polish Layer, and the 
Oxide Film are  Shown. (From Ref. 83a.) 

Subsurface Deformation, 
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5.2 Surface Hardness 

The hardness of t h e  s u r f a c e s  a t  an i n t e r f a c e  i s  one of t h e  most 

important p r o p e r t i e s  t h a t  govern t h e  a c t u a l  c o n t a c t  area and, consequent ly ,  

t h e  thermal contact  conductance. I n  f a c t ,  i n  t h e  s imples t  c o n t a c t  

t h e o r i e s  it i s  assumed t h a t  t h e  a s p e r i t i e s  deform p l a s t i c a l l y  and t h a t  

t h e  a c t u a l  con tac t  area is  r e l a t e d  t o  t h e  load on t h e  i n t e r f a c e  by t h e  

expres s ion  

A = F/H , (5.1) 

where H i s  t h e  hardness  of t h e  s o f t e r  of t h e  two materials i n  c o n t a c t .  

This u s e  of the t e r m  hardness i s  a r easonab le  and ve ry  u s e f u l  concept*, 

but i t s  l i m i t a t i o n s  should be recognized. 

Hardness is b a s i c a l l y  a measure of t h e  r e s i s t a n c e  t o  p l a s t i c  

deformation, o r i g i n a l l y  def ined i n  terms of a s c r a t c h  t e s t ,  bu t  a l s o  

measured by s t a t i c  and dynamic i n d e n t a t i o n  tests and by rebound tests [82a, 104bl .  

Each ha rdness  test has  a s p e c i f i c  d e f i n i t i o n ,  and comparisons are s t r i c t l y  

v a l i d  only under i d e n t i c a l  cond i t ions .  Nonetheless,  e m p i r i c a l  c o r r e l a t i o n s  

of d i f f e r e n t  hardness measurements have been made f o r  c e r t a i n  materials. 

Since it i s  here app l i ed  t o  t h e  i d e n t a t i o n  of a s u r f a c e  by a s p e r i t i e s  

on ano the r  su r face ,  t h e  p e r t i n e n t  hardness  tests are t h e  i n d e n t a t i o n  type  

tests involving s m a l l  i n d e n t a t i o n  areas, comparable t o  t h e  areas of 

con tac t  s p o t s  between t h e  mating s u r f a c e s .  The terns 'microhardness '  

and 'microindentat ion '  hardness have been used t o  d e s c r i b e  such tes ts  [82a] .  

Values of hardness  measured by i n d e n t a t i o n  tests depend on t h e  

shape and s i z e  of t h e  i n d e n t e r ,  t h e  load a p p l i e d ,  and t h e  t i m e  t h e  load 

is  maintained. The area used i n  computing hardness  is, i n  e f f e c t ,  

measured a f t e r  t h e  i n d e n t e r  has been removed. I n  some tests t h e  a c t u a l  

area of t h e  inden ta t ion  i s  used, and i n  o t h e r s  t h e  p r o j e c t e d  area is 

used. C l e a r l y ,  microhardness i s  c l o s e l y  r e l a t e d  t o  t h e  deformation of 

* A general discliasion of hardness  and i ts  a p p l i c a t i o n  t o  c o n t a c t  t heo ry  
is given i n  App. I of Ref. 56a. 
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a s p e r i t i e s ,  b u t  i t  i s  a more complex r e l a t i o n  than  is  implied by Eq. 5.1. 

According t o  Ref. 21, Meyer hardness i s  p r e f e r a b l e  t o  o t h e r  hardnesses  

i n  thermal  c o n t a c t  problems because i t  g ives  t h e  p r o j e c t e d  area of t h e  

s o l i d  s p o t s ,  which is  t h e  smallest area exposed t o  h e a t  flow. 

C o r r e l a t i o n s  of hardness and o t h e r  p h y s i c a l  p r o p e r t i e s ,  a l though 

l a r g e l y  empi r i ca l ,  are u s e f u l  when hardness  measurements are n e t  a v a i l a b i e .  

Mot t [82a ]  d i s c u s s e s  t h i s  subject  and g i v e s  r e f e r e n c e s  t o  t h e  c o n t r i b u t i o n s  

of Holm, Tabor, and o t h e r s .  The r e l a t i o n  u s u a l l y  used i n  computations 

of thermal  c o n t a c t  conductance i s  

H = 3 Y  , (5.2) 

where Y i s  t h e  y i e l d  stress. Some a u t h o r s  r e p l a c e  Y by t h e  i n i t i a l  

elastic l i m i t ,  Yo, which i s  somewhat smaller than  t h e  y i e l d  stress; and 
which i s  equa l  t o  t h e  a few have replaced Y by t h e  u l t i m a t e  s t r e n g t h ,  Su, 

y i e l d  stress f o r  an i d e a l l y  p l a s t i c  material. (For example, see Sec. 4 .1 .2  

and 4.1.4 e )  

on ly  s l i g h t l y  wi th  deformation, bu t  t h e  y i e l d  s t r e n g t h  may become much 

g r e a t e r  t han  t h e  i n i t i a l  e l a s t i c  l i m i t .  

worked material w i l l  equal  t h e  u l t i m a t e  s t r e n g t h .  

The elastic l i m i t  of materials which work harden i n c r e a s e s  

The y i e l d  stress of a f u l l y  

According t o  Ref. 67 (p 12  f f )  t h e  hardness  of a metal  s u r f a c e  

depends on t h e  method by which t h e  s u r f a c e  w a s  prepared and on t h e  depth 

below t h e  s u r f a c e .  

hardness  than  t h e  l a y e r s  immediately below them, bu t  t h e  microhardness 

dec reases  a t  s t i l l  g r e a t e r  depths. 

hardness  a t  an in t e rmed ia t e  l a y e r  i s  t h e  r e s u l t  of maximum work-hardening 

occur r ing  i n  t h i s  r eg ion  during s u r f a c e  p repa ra t ions .  
which occur s  when two metal su r faces  are pressed t o g e t h e r  causes  f u r t h e r  

work-hardening. 

The outermost l a y e r s  of a metal have a lower micro- 

The occurrence of maximum micro- 

The deformation 

In Ref. 37 i t  i s  emphasized t h a t  t h e  hardness  should be d e t e r -  
mined f o r  t h e  average con tac t  size i n  t h e  j o i n t  under cons ide ra t ion .  
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Data f o r  t h e  dependence of hardness  on i n d e n t a t i o n  area are given i n  

Ref. 37 f o r  s t a i n l e s s  steel. Although t h i s  may be an important consid- 

e r a t i o n ,  some r e p o r t s  seem t o  have exaggerated t h e  p o s s i b l e  v a r i a t i o n  

of hardness  with t h e  load on c o n t a c t  conductance. Two such r e p o r t s  are 

d i scussed  below. 

Laming [68] analyzed thermal con tac t  conductance between s u r f a c e s  

having a r e g u l a r l y  p i t ched  r i d g i n g  and conducted experiments w i th  specimens 

onto which such a r idged p a t t e r n  w a s  machined. 

s o l i d  conductance i n d i c a t e d  by h i s  measurements on s teel  / b r a s s  and 

The v a l u e s  of s o l i d  t o  

steel/a$uminum c o n t a c t s  were smaller than  p r e d i c t e d ,  and they inc reased  wi th  

i n c r e a s i n g  load a t  a higher  rate than  p red ic t ed .  

experimental  d a t a  could be c o r r e l a t e d  wi th  t h e  theory,  however, i f  he 

hypothesized t h a t  t h e  hardness which c o n t r o l s  t h e  area a t  p o i n t s  of 

a c t u a l  con tac t  is greater a t  smaller loads .  It is  d o u b t f u l ,  however, 

whether t h i s  hypothesis provides  a r ea l i s t i c  i n t e r p r e t a t i o n  of t h e  d a t a .  

Laming admits  t h a t  t h e  maximum v a l u e s  of hardness  deduced by applying 

t h e  hypothesis  a r e  "fabulously high". 

above hypothesis  is t h a t  t h e  areas of t h e  c o n t a c t  s p o t s  i n c r e a s e  wi th  

load ,  which c o n t r a d i c t s  t h e  obse rva t ion  by o t h e r s - t h a t  t h e  area remains 

r e l a t i v e l y  constant  and only t h e  number of s p o t s  i n c r e a s e s  w i t h  load .  

Laming found t h a t  t h e  

Furthermore, a c o r o l l a r y  of t h e  

Williams [104a] pursued t h e  above p o i n t  i n  experiments performed 

wi th  n i c k e l / n i c k e l  and steel/steel  j o i n t s :  

ments under vacuum, W i l l i a m s  e l imina ted  t h e  problem Laming had t o  sep- 

arate t h e  s o l i d  t o  s o l i d  conductance from h i s  measured v a l u e s  of t o t a l  

j o i n t  conductance. 

r e s u l t s  by an apparent  i n c r e a s e  i n  hardness  wi th  dec rease  of c o n t a c t  

load.  However, t h e  obse rva t ions  t h a t  t h e  a c t u a l  number of c o n t a c t  s p o t s  

w a s  much smaller than  t h e  p o t e n t i a l  number of s p o t s  f o r  t h e  type  of 

s u r f a c e  f i n i s h  used and t h e  f a c t  t h a t  t h e  s u r f a c e  contained r e g i o n s  

of heavy spot loading and o t h e r s  of much l i g h t e r  l oad ing  s t r o n g l y  

suggest  t h a t  s u r f a c e  waviness c o n t r i b u t e d  t o  t h e  observed v a r i a t i o n  
of thermal  conductance w i t h  load.  

By conducting h i s  experi-  

I n  t h i s  case, it w a s  aga in  p o s s i b l e  t o  i n t e r p r e t  t h e  
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5.3 Actual Contact Area a t  an I n t e r f a c e  

5.3.1 In t roduct ion  

When nominally p l ane  s u r f a c e s  are placed i n  c o n t a c t ,  t h e  a c t u a l  

con tac t  area is  on ly  a small f r a c t i o n  of t h e  apparent  c o n t a c t  area. 

Because of s u r f a c e  roughness, c o n t a c t  occu r s  only a t  p o i n t s  where a spe r -  

i t i e s  on one o r  t h e  o t h e r  s u r f a c e  touch t h e  o p p o s i t e  su r face .  Depending 

on t h e  mechanical p r o p e r t i e s  of t h e  materials and t h e  p r e s s u r e  wi th  

which t h e  two members are he ld  t o g e t h e r ,  each microscopic c o n t a c t  area 

may b e  surrounded by r e l a t i v e l y  l a r g e  areas where t h e  s u r f a c e s  are 
sepa ra t ed .  For a t i m e  it w a s  u s u a l l y  assumed t h a t  t h e  microscopic 

c o n t a c t s  are uniformly d i s t r i b u t e d  over t h e  e n t i r e  i n t e r f a c e ,  b u t  it 

was later recognized t h a t  l a r g e - s c a l e  s u r f a c e  i r r e g u l a r i t i e s  cause t h e  

microcontacts  t o  b e  confined t o  i s o l a t e d  r e g i o n s  of t h e  i n t e r f a c e .  

Fig.  5.4 i l l u s t r a t e s  t h e  s e v e r a l  c o n t a c t  areas t h a t  can be 

d i s t ingu i shed :  

1. The apparent  c o n t a c t  area which is t h e  area 
of a p l a n e  passing through t h e  i n t e r f a c e  be- 
tween two con tac t ing  s o l i d s .  

The macroscopic c o n t a c t  areas enclosed by contours  
surrounding l o c a t i o n s  where c o n t a c t  r e s u l t s  from 
deformation of t h e  s u r f a c e  undulat ions.  

2.  

Fig.  5.4 - Schematic Diagram o f  Two Rough Surfaces i n  Contact: 

(From Ref. 67.)  

1 Apparent Area; 2 Macroscopic Contact Area; 3 
Actual,  Microscopic Contact Area. 

\ 
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3. The real contact area, which is the sum of 
all the microscopic areas, where actual touching 
of the solids occurs. 

The model shown in Figure 4 . 4  is an idealization of the above 

picture . 
Many references discuss the surface deformation and real 

contact formed when two solids are brought together. A short resume 
of the deformation of metals and non-metals and the determination of 

real contact area is given in Ref. 83a (pp 710-712). Hertz's solutions 
for the pressure between spherical bodies in contact and the size of 
the contact area resulting from elastic deformation are given in Ref. 

100 (p 372 ff). Archard [3] reviewed some of the literature on surface 
deformation and contact area and developed the theoretical relation 
between load and contact area for several models simulating rough and 
wavy surfaces deformed elastically by contact with a smooth flat surface. 

Refs. 33 and 67 are largely concerned with Russian work in this field. 
Ch. 1 of Ref. 67 includes a discussion of surface characteristics, real 
contact area, and the effect of deformation on surface properties; Ch. 2 

gives theoretical and experimental methods for calculating contact area 

between rough surfaces. Ref. 33 gives theoretical and experimental 
methods for estimating actual contact areas and also gives the results 

of a number of experimental studies. A review of the process by which 

asperities and surface waves deform and'contact areas are formed under 

load may be found in Ref. 108. A good review of the deformation process 
can also be found in Ref.39 (pp 42-54) .  
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5.3.2 Deformation of Contacting Surfaces Under Load 1 
When two surfaces are placed in contact they first touch at I 

I 
only a few places. 
decreases and the number of discrete contact points increases. 

occiira at the c z n t i c t  paints and also extends to the waviness in the 

As a load is applied the separation of the surfaces 

Deformation 
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su r face .  Most of t h e  a s p e r i t i e s  deform p l a s i t c a l l y ,  b u t  elastic defor-  

mation of a s p e r i t i e s  can occur a t  t h e  edge of t h e  macroscopic c o n t a c t  

areas, where t h e  stresses a r e  r e l a t i v e l y  low. The stresses i n  t h e  su r -  

f a c e  waves are always much smaller t h a n  t h o s e  i n  t h e  i n d i v i d u a l  a s p e r i t i e s ,  

and t h e  wave deformation is  t h e r e f o r e  e las t ic .  

When t h e  load  i s  removed, t h e  s u r f a c e  waves recover  e l a s t i c a l l y .  

This  is  accompanied by a d i s r u p t i o n  of most of t h e  p l a s t i c a l l y  deformed 

c o n t a c t  r e g i o n s  s o  t h a t  t h e  r e s i d u a l  c o n t a c t  area a f t e r  e las t ic  recovery 

is cons ide rab ly  smaller than t h e  c o n t a c t  area ob ta ined  du r ing  t h e  i n i t i a l  

p l a s t i c  deformation. 

One view of t h e  process of s u r f a c e  deformation under an a p p l i e d  

load is  t h e  fol lowing.  As t h e  a p p l i e d  load is  i n c r e a s e d ,  t h e  o n s e t  of 

p l a s t i c  flow occur s  when the  l o c a l  mean p r e s s u r e  a t t a i n s  a v a l u e  of 

approximately 1.1 t i m e s  t h e  elastic l i m i t  of t h e  material .  Because 

a c t u a l  c o n t a c t  u s u a l l y  occurs over a v e r y  small f r a c t i o n  of t h e  appa ren t  

c o n t a c t  area, a q u i t e  s m a l l  l oad  may s u f f i c e  t o  cause t h e  i n i t i a t i o n  of 

p l a s t i c  flow. 

a t t a i n e d  when t h e  l o c a l  mean p r e s s u r e  r eaches  a v a l u e  of about 3 t i m e s  

t h e  elastic l i m i t  of t h e  s o f t e r  of t h e  two mating materials. I f  t h e  

With f u r t h e r  i n c r e a s e  i n  l o a d ,  f u l l y  p l a s t i c  f low i s  

load i s  inc reased  f u r t h e r ,  t h e  area of real c o n t a c t  w i l l  i n c r e a s e ;  b u t  

.the mean p r e s s u r e  w i l l  remain equa l  t o  approximately 3 t i m e s  t h e  elastic 

l i m i t .  Work hardening caused by t h e  p l a s t i c  deformation, however, may 

cause t h e  elastic l i m i t  t o  i nc rease .  Experiments [18a, 18b, 56al have 

shown t h a t ,  except f o r  extremely smooth s u r f a c e s ,  t h e  l o a d s  which can be 

supported by elastic deformation are extremely s m a l l .  

Williamson [51] i n  f a c t ,  claim t h a t  most s u r f a c e s  do n o t  undergo a 

t r ans fo rma t ion  from elastic t o  p l a s t i c  deformation as t h e  load  i s  i n c r e a s e d ,  

b u t  deform p l a s t i c a l l y  even under t h e  l i g h t e s t  loads.  The deformation of 

non-metals such as polymeric s o l i d s  and rubbe r - l i ke  materials may be much 

more n e a r l y  elastic than  p l a s t i c  i n  na tu re .  
c e r t a i n t y  i n  t h e  behavior under ve ry  l i g h t  l o a d s ,  p r a c t i c a l  l o a d s  are u s u a l l y  

l a r g e  enough t o  cause p l a s t i c  deformation. 

Greenwood and 

Although t h e r e  is  some un- 



A model for surface deformation given in Ref. 33 (pp 53 and 6 3 )  

is based on the assumption, supported by experiment, that the microscopic 

irregularities are somewhat harder than the base material because of the 
cold-hardening that takes place during surface finishing. In accordance 

with this model, plastic deformation of the tips of surface projections 

and elastic sagging of the material under them begin simultaneously. 

Yovanovich and Fenech [lo71 concluded that the deformation of 
asperities cannot be described as either purely plastic or purely elastic 
yielding. The results of experiments compared to theories assuming 

purely plastic and purely elastic yielding showed [lo71 that the 
deformation is plastic at low to moderate contact pressures but that 
there is an elastic contribution at higher pressures. Extending the 

work of others, Yovanovich 11091 developed a formula for thermal contact 
conductance for surfaces which are both rough and wavy. He assumed that 
the waves deform elastically and that deformation of the asperities is 
elastoplastic. Application of his method required graphical determination 
of real contact area as a function of load. 
having only roughness and another having only waviness were in reason- 
ably good agreement with the theory. Other test data were interpreted 
as showing that the deformation was partly plastic and partly elastic 

Test data for a sample 

over the entire load range (up to lo4 lb/in 2 ); however, it is not clear 
from Ref. 109 which sample was tested. 
describing such behavior analytically over a wide range of contact 

pressure, Yovanovich and Fenech [lo71 proposed an empirical approach for 

obtaining the geometric parameters (number of contact spots and actual 
contact area) f o r  n9ninally flat surfaces. 
mental determination of the relation between load on the joint and the 

relative displacement or compliance, of the two surfaces. Application 
of the method to experimental data, including some from Ref. 75, led to 
good agreement with thermal conductance theory. 

In view of the difficulty of 

The method involves experi- 
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When t h e  clamping f o r c e  is inc reased ,  t h e  average i n t e r f a c e  

gap he igh t  is  decreased i n  p a r t  by p l a s t i c  deformation of t h e  peaks of 

t h e  a s p e r i t i e s  and i n  p a r t  by e las t ic  deformation of t h e  material sup- 

p o r t i n g  t h e  p l a s t i c a l l y  deformed peaks. 

c o n t a c t  areas i n c r e a s e s  t h e  e l a s t i c  d e f l e c t i o n  becomes less s i g n i f i c a n t . *  

A s  zhe number of macroscopic 

Ling [751 analyzed the  load-compliance c h a r a c t e r i s t i c s  of two 

rough s u r f a c e s  i n  c o n t a c t  and made comparisons wi th  t h e  c a s e  of a rough 

s u r f a c e  i n  c o n t a c t  w i t h  a r i g i d ,  f l a t ,  smooth s u r f a c e ,  which had been 

considered by o t h e r s .  H e  assumed t h e  a s p e r i t i e s  t o  be r i g h t  c i r c u l a r  

cones randomly d i s t r i b u t e d  over t h e  s u r f a c e ,  s o  t h a t  equa l  numbers of 

cones start a t  every p l ane  p a r a l l e l  t o  t h e  s u r f a c e .  This  l e a d s  t o  a 

geometric i n c r e a s e  i n  t h e  number of c o n t a c t s  between a s p e r i t i e s  on 

o p p o s i t e  s u r f a c e s  as t h e  sepa ra t ion  of t h e  s u r f a c e s  is  decreased.  

Assuming f u r t h e r  t h a t  t h e  cones are p e r f e c t l y  p l a s t i c ,  h e  ob ta ined  

load-compliance c h a r a c t e r i s t i c s  which had s t e e p  s l o p e s ,  i n  b e t t e r  agree- 

ment w i th  experiment t han  t h e  lower s l o p e s  p r e d i c t e d  by t h e o r i e s  f o r  t h e  

case i n  which one s u r f a c e  9s smooth and r i g i d .  

r e l a t e d  t o  t h e  thermal c o n t a c t  conductance problem, t h e  computation of 

a c t u a l  c o n t a c t  area and conductance w a s  not considered i n  Ref. 75. 

Although L ing ' s  work is  

5.3.3 Surface Ana lys i s  and Es t ima t ion  o f  Ac tua l  Contact  Area 

The dependence of real  con tac t  area on l oad  depends on t h e  

shape of t h e  a s p e r i t i e s ,  t h e i r  height  d i s t r i b u t i o n ,  and t h e  metal pro- 

p e r t i e s  - p a r t i c u l a r l y  t h e  e l a s t i c  modulus, y i e l d  p o i n t ,  and e x t e n t  of 

work-hardening. 

g iven  clamping f o r c e  by i ts  e f f e c t  on t h e  p h y s i c a l  p r o p e r t i e s  of t h e  

materials. For s o f t  metals, t h e  s i z e  of con tac t  area i s  a l s o  in f luenced  

by t h e  t i m e  t h a t  t h e  j o i n t  remains under load [67, p 571. 

* See Ref. 74, p 33. 

Temperature a f f e c t s  t h e  c o n t a c t  area ob ta ined  f o r  a 

Note t h a t  what are termed macroscopic c o n t a c t  
areas i n  t h i s  r e p o r t  are called apparent c o n t a c t  areas i n  Ref. 74. 



No simple,  r e l i a b l e  procedures  are available f o r  computing 

c o n t a c t  a r e a s  f o r  p r a c t i c a l  a p p l i c a t i o n s .  The g r a p h i c a l  method desc r ibed  

i n  Ref. 39 is t ed ious  and t i m e  consuming.'  The analog method desc r ibed  

i n  Ref. 54 is more e f f i c i e n t ,  bu t  r e q u i r e s  t h e  u s e  of special  appa ra tus ;  

fur thermore,  t h e  method appea r s  t o  be l i m i t e d  t o  s i t u a t i o n s  i n  which i t  

is  adequate t o  cons ide r  a small r eg ion  of t h e  s u r f a c e  o r  i n  which t h e  

r a d i u s  of cu rva tu re  of t h e  waviness is  s u f f i c i e n t l y  l a r g e  [ l o g ] .  

A n  ex tens ive  c o n s i d e r a t i o n  of t h e  problem may be found i n  Ref 33.  Theo- 

re t ical  methods of computing con tac t  area are reviewed; t h e i r  l i m i t a t i o n s  

and t h e  d i f f i c u l t y  of applying them t o  real s u r f a c e s  are desc r ibed .  

I f  s u r f a c e  waviness had s u f f i c i e n t  r e g u l a r i t y  t h e  macroscopic 

con tac t  a r ea  a t  an  i n t e r f a c e  could be e s t ima ted  by us ing  t h e  Hertz  re- 

l a t i o n s  [ loo] .  However, s u r f a c e  waviness is  g e n e r a l l y  ve ry  v a r i a b l e ,  

and it may b e  necessary t o  measure t h e  macroscopic c o n t a c t  area experi-  

mental ly .  

c a l c u l a t i n g  t h e  real c o n t a c t  area due t o  microscopic  c o n t a c t s  w i t h i n  

t h e  macroscopic c o n t a c t  areas [67]. 

A number of models and t h e o r i e s  have been developed f o r  

The s imples t  model f o r  c o n t a c t  area assumes t h a t ,  when two 

metals a r e  i n  c o n t a c t ,  t h e  a s p e r i t i e s  of t h e  ha rde r  metal p e n e t r a t e  

t h e  s o f t e r  m e t a l  i n  a p l a s t i c  manner, a c t i n g  l i k e  i n d e n t e r s  i n  a micro- 

hardness  test. Therefore ,  t h e  p r e s s u r e  over each c o n t a c t  p o i n t  equa l s  

t h e  i n d e n t a t i o n  y i e l d  p r e s s u r e ,  o r  hardness ,  of t h e  s o f t e r  metal. The 

actual  contact  area i s  

A = F/H , 
where F is t h e  load between t h e  two s u r f a c e s  and H i s  t h e  hardness  of 

t h e  s o f t e r  materiai. Znder these c o n d i t i o n s  t h e  a c t u a l  c o n t a c t  area 

is p ropor t iona l  t o  t h e  load ,  is a s m a l l  f r a c t i o n  of t h e  apparent  c o n t a c t  

area, and i s  independent of t h e  apparent  c o n t a c t  area. 

Archard [3]  h a s  shown t h a t  a similar r e l a t i o n  between a c t u a l  
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c o n t a c t  area and load may e x i s t  even when t h e  deformations are e n t i r e l y  

e las t ic .  When t h e  materials are such t h a t  e l a s t i c  deformation occur s ,  

t h e  a c t u a l  c o n t a c t  area and load are r e l a t e d  according t o  t h e  r e l a t i o n  

A = K F m ,  ( 5 . 3 )  

where K is  a cons t an t .  Analyses based on d i f f e r e n t  mathematical  models 

show t h a t  m l i e s  between 2 / 3  ( f o r  c o n t a c t  between a smooth sphe re  and a 

smooth f l a t  p l a t e )  and 1 ( t h e  va lue  approached by more complex models* 

which more n e a r l y  s imula t e  the roughness and waviness of real s u r f a c e s ) .  

A s  t h e  complexity of t h e  mathematical models i n c r e a s e s ,  t h e  number of 

c o n t a c t  areas s i m i l a r l y  becomes more n e a r l y  d i r e c t l y  p r o p o r t i o n a l  t o  

t h e  l o a d ,  t h e  s i z e  of each contact  area becoming less dependent on load.  

Henry [53] desc r ibed  a random process  method of s u r f a c e  a n a l y s i s  

which invo lves  t h e  determinat ion of two s t a t i s t i c a l  parameters.  I f  t h e  

parameters are known f o r  any two s u r f a c e s  they can be combined t o  y i e l d  

t h e  i n t e r f a c e  geometry when the s u r f a c e s  are placed i n  c o n t a c t .  It was 

i n d i c a t e d  t h a t  t h e  procedure should y i e l d  b e t t e r  r e s u l t s  a t  high con tac t  

p r e s s u r e s  than  t h e  g r a p h i c a l  [39] o r  analog methods [ 5 4 ]  because it 

t a k e s  i n t o  account conservat ion of material**; however, extremely l i t t l e  

experimental  v e r i f i c a t i o n  of the procedure has  been found i n  t h e  l i t e r -  

a t u r e .  

t i o n s  of t h e  parameters.  

S p e c i a l  apparatus  would be r equ i r ed  f o r  convenient determina- 

* The complexity i s  inc reased  by covering t h e  smooth sphere wi th  
smaller spheres  and then covering them i n  t u r n  wi th  y e t  smaller 
sphe res .  

** When t h e  peaks of asperities are f l a t t e n e d  t o  a given l e v e l  by 
p l a s t i c  deformation, t h e  contact  area formed is  g r e a t e r  t han  t h e  
bea r ing  area obtained when t h e  peaks are s l i c e d  o f f  a t  t h e  same 
level .  I n  f a c t ,  Ref. 74 (p 31) i n d i c a t e s  t h a t  when roughnesses 
are f l a t t e n e d  t o  approximately 55 pe rcen t  of t h e i r  o r i g i n a l  
h e i g h t ,  t h e  peaks w i l l  have flowed i n t o  and e n t i r e l y  f i l l e d  t h e  
v a l l e y s .  
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Foster  [42] made de te rmina t ions  of t h e  d e n s i t y  of c o n t a c t  

s p o t s ,  n ,  f o r  several samples us ing  t h e  au to rad iog raph ic  technique,  

Fenech's g raph ica l  method, and Henry's random process  a n a l y s i s .  It 

w a s  concluded t h a t  t h e  l a t te r  two methods would probably y i e l d  approxi- 

mately t h e  same estimate of n ,  provided t h e  s u r f a c e s  were desc r ibed  wi th  

s u f f i c i e n t  accuracy f o r  t h e  random process  a n a l y s i s .  

technique gave v a l u e s  which were lower than  t h o s e  of t h e  g r a p h i c a l  

method by a f a c t o r  2.5. This  w a s  a s c r i b e d  t o  t h e  p o s s i b i l i t i e s  t h a t  

no t  a l l  p a r t s  of a sample received enough tracer material du r ing  prepar- 

a t i o n  and t h a t  tracer t r a n s f e r  d i d  n o t  occur a t  a l l  c o n t a c t  s p o t s .  

The au to rad iog raph ic  

Estimating t h e  a c t u a l  c o n t a c t  area from measurements of elec- 

t r ica l  r e s i s t a n c e  a c r o s s  t h e  i n t e r f a c e  is  s u b j e c t  t o  two major d e f e c t s  

[83a]:  (1) un les s  one can determine t h e  number of c o n t a c t  s p o t s ,  t h e r e  

i s  no unique r e l a t i o n  between t h e  t o t a l  con tac t  area and t h e  t o t a l  

r e s i s t a n c e ;  and (2)  t h e  presence of c e r t a i n  s u r f a c e  f i l m s  may so  a f f e c t  

t h e  e lectr ical  r e s i s t a n c e  as t o  render  i n t e r p r e t a t i o n  of r e s u l t s  d i f f i -  

c u l t  and unce r t a in .  L imi t a t ions  of t h i s  method are a l s o  d i scussed  i n  

Ref.-33 (pp 1 4  and 15) .  

Experiments have shown [18, 33, 56a, and 67 (p 5111 t h a t  t h e  

i n c r e a s e  i n  contact  area wi th  i n c r e a s i n g  load is  determined mainly by 

an i n c r e a s e  i w t h e  number of c o n t a c t i n g  a s p e r i t i e s ,  t h e  s i z e  of t h e  

i n d i v i d u a l  contact  areas being almost independent of t h e  compressive 

f o r c e .  Boeschoten and van de r  Held [18] concluded t h a t  t h e  average 

r a d i u s  of con tac t  s p o t s  is  about 30 p (0.0012 i n . )  f o r  a wide v a r i e t y  

of metals and a wide range of c o n t a c t  cond i t ions .  However, based on 

information i n  Ref. 4 t o  t h e  e f f e c t  t h a t  t h e  con tac t  conductance remains 

approximately cons t an t  above a c e r t a i n  c o n t a c t  p r e s s u r e ,  t hey  concluded 
t h a t ,  a t  con tac t  p r e s s u r e s  exceeding about 1400 l b / i n  2 , t h e  s i z e  of t h e  

con tac t  spo t s  i n c r e a s e s  l i n e a r l y  wi th  c o n t a c t  p r e s s u r e ;  t h e r e  occur s  a 

confluence of c o n t a c t  s p o t s  and a r e d u c t i o n  i n  t h e i r  number. 



I * 

Simi la r  conclusions were reached by Mustacchi and G i u l i a n i  [83 ] ,  

who conducted an  experimental  and a n a l y t i c a l  s tudy  aimed a t  e s t a b l i s h i n g  

c h a r a c t e r i s t i c  semi-empirical r e l a t i o n s  f o r  e s t i m a t i n g  real c o n t a c t  

areas. They obtained bearing curues f o r  v a r i o u s  j o i n t s  by p l o t t i n g  

t o ta l  contact area vs. t h e  number of contact spots per unit (apparent) 
contact area. I d e a l l y ,  f o r  experimental  de t e rmina t ion  of bea r ing  curves,  

one member of t h e  j o i n t  should have a f l a t ,  i n f i n i t e l y  hard,  smooth 

s u r f a c e .  General ly ,  t h e  bearing curves were s t r a i g h t  l i n e s  which curved 

upward a t  high v a l u e s  of t o t a l  c o n t a c t  area, This  i n d i c a t e d  t h a t  t h e  

area p e r  c o n t a c t  s p o t  remained p r a c t i c a l l y  cons t an t  f o r  a range of in-  

c r e a s i n g  loads  on t h e  j o i n t ,  but t h e  area pe r  spo t  i nc reased  wi th  f u r t h e r  

i n c r e a s e  i n  load.  

f o r  aluminum (SAP), Armco i ron ,  and carbon s tee l .  The approach presented 

i n  Ref. 83 does n o t  seem t o  be r e a d i l y  a p p l i c a b l e  t o  p r a c t i c a l  problems, 

bu t  w i th  f u r t h e r  development it  might be u s e f u l  under some cond i t ions .  

No  d i f f e r e n c e s  w e r e  found among t h e  bea r ing  curves 

A new theory  of elastic c o n t a c t  between nominally f l a t  s u r f a c e s  

w a s  r e c e n t l y  r epor t ed  by Greenwood and Williamson [51]. 

d e t a i l e d  model of elastic contact  which t a k e s  account of two material 

p r e p e r t i e s :  t h e  hardness and modulus of e l a s t i c i t y ,  and t h r e e  topographic  

parameters:  t h e  mean r a d i u s  of asperit ies,  t h e i r  s u r f a c e  d e n s i t y ,  and 

t h e  spread of t h e i r  he igh t s .  The theory l e a d s  t o  expres s ions  f o r  t h e  

t o t a l  real  c o n t a c t  area,  t h e  number of microcontacts ,  t h e  load ,  and t h e  

( e l e c t r i c a l )  conductance between two con tac t ing  s u r f a c e s  i n  terms of t h e  

s e p a r a t i o n  of t h e i r  mean planes.  I n  agreement wi th  experimental  evidence, 

t h e  theo ry  i n d i c a t e s  t h a t  t h e  number of microcontacts  and t h e  real c o n t a c t  

area depend only on t h e  l o a d ,  and no t  on t h e  nominal c o n t a c t  p re s su re .  

S i m i l a r l y ,  i t  a l s o  i n d i c a t e s  t h a t  t h e  s e p a r a t i o n  of t h e  s u r f a c e s  is  n o t  

ve ry  s e n s i t i v e  t o  t h e  p r e s s u r e ,  t h e  s e p a r a t i o n  of similar s u r f a c e s  being 

approximately equa l  t o  t h e  c e n t e r l i n e  average of roughness.  

t h a t  t h e  r a t i o  of rea l  c o n t a c t  a r e a  t o  load i s  n e a r l y  cons t an t  f o r  

e las t ic  c o n t a c t s  l e d  t o  t h e  concept of an e las t i c  hardness which can 

They used a 

The f a c t  
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be used for predicting the real contact area for given loads just as the 
conventional hardness is  used when plastic deformation is  assumed. 

plasticity i n d e x ,  which i s  essentially the ratio of elastic hardness to 

conventional hardness, was introduced in defining a criterion for the 
onset of plastic deformation. 
substantially exceeding 1 and therefore deform plastically even under 
the lightest loads. The authors mention that a forthcoming paper will 
show that the above results are not limited to nominally flat surfaces 

but are also applicable to contacts between rough curved surfaces. 

A 

Most common surfaces have plastic indices 

The 
authors also describe a surface-analyzing system they have developed for 
computing, among others, the three topographical parameters mentioned 

above. It combines a profilometer, an anolog-to-digital converter, and 
a digital computer. 



6. EXPERIMENTAL INVESTIGATIONS 

6.1 Sources o f  Data Summaries 

Since the amount of data available in the literature is too 

great to have been adequately summarized within the limits of this report, 
references t o  the original sources are given below. 

Much of the data on therm31 contact conductance available in 

the literature prior to 1 9 6 4 ,  including data obtained in a vacuum and 
with filler materials, was tabulated in Ref. 41 .  Data on the thermal 

contact conductance of stainless steel, magnesium, aluminum, copper, and 
2 iron joints in a vacuum, at contact pressures up to 100 lb/in were 

presented in Refs. 44 and 45 .  

ders, 3 in. long. Much of the data in Refs.44 and 45 were included by 

Fried in Refs. 46 and 4 7 ,  which have extensive summaries of data on con- 
tact conductance measurements made in a vacuum on stainless steel, mag- 
nesium, copper, titanium, titanium alloy, and aluminum alloy joints with 

a variety of surface finishes. 

The test samples were 2-in. diameter cylin- 

It has been pointed out [27,  371 that thermocouples mounted 

too close to the interface, where heat flow l ines  are not uniformly dis- 
tributed, may yield unreliable readings. 
in evaluating data that were obtained with thin samples. 

This factor should be considered 

6.2 Sources o f  Information on Apparatus 

Apparatus for measuring thermal contact resistance between 

cylindrical specimens in a vacuum is described in References 13, 25, 4 5 ,  4 6 ,  

4 7 ,  4 9 ,  62, and 1 0 9 ,  among others. 
apparatus in which the contact surfaces could be separated for outgassing, 
placed in contact, and forced together with a selected pressure - all 
with controls external to the vacuum chamber. From its description, it 

appeared that the apparatus was limited to contact pressures below 

approximately 10 lb/in2, 
higher contact pressures. 

Stubstad r 9 8 ,  993 described a vacuum 

but the design could probably be modified for 
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6.3 Use of Interface Fillers and Surface Coatings 

A method of increasing thermal contact conductance is to fill 

the interfacial gap with a highly conductive material. 
tried both as coatings on the mating surfaces and as foils placed between 

them. Grease and rubber have also been tried as interfacial fillers. 

Some of the experiments that have been performed are discussed briefly 
below. 

Metals have been 

Experimental measurements E491 indicate that the thermal con- 

tact conductance between metal surfaces having high microhardness can be 
increased substantially by plating them with a softer metal. The effect 
was apparent only at low contact pressures, however. Filling the inter- 

stices of the interface with a filled silicone grease also had the effect 
of producing a large increase in thermal contact conductance. 

Bloom [131 reported large increases in thermal conductance when 

thin layers of vacuum grease or silicone oil were added at the interface 

of aluminum and stainless steel specimens tested in a vacuum. 
fillers he also found that the thermal conductance was relatively indepen- 
dent of contact pressure over a substantial range. 

With these 

Clausing and Chao [ 2 7 ]  found that thermal contact conductance was 

significantly increased when the interface between brass specimens was 

filled with silicone high vacuum grease. The difference between conduc- 
tances with and without the grease increased as the contact pressure was 
increased. The effect was ascribed to an effective increase in the 
macroscopic contact area. 

Experimental results showing the effect of silicone grease and 
silicone rubber fillers on the thermal conductance between aluminum plates 

in a vacuum were reported in Ref. 4 3 .  As the plates were only 1/8 in. 
thick, however, the measurements were subject to the difficulty of ob- 
taining reliable values of interface temperature drop with thermocouples 
mounted close t o  the interface. 
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Jansson t61linvestigated the effect of fillers on thermal inter- 

face conduction between aluminum and beryllium specimens in a vacuum. 
Tests were made with a flexible epoxy cement, indium and lead foils, and 

2 
aluminum and gold leaf at contact pressures between 10 and 250 lb/in . 
The indium foil, an extremely soft material, gave evidence of being suffi- 

ciently compliant to completely fill the voids caused by surface irregular- 
ities; and it produced a marked increase in conductance. 

and lead foil provided some increase in Conductance, but the aluminum and 
gold leaf did not cause any appreciable 

The epoxy cement 

improvement. 

The use of indium foil, silicone vacuum grease, and a filled 

grease* as joint filler materials was investigated by Cunnington 1291 

The joints were made of 6061 aluminum and AZ-31 magnesium; and they were 
2 tested under vacuum at contact pressures between 17 and 96 lb/in , mean 

interface temperatures between 60 and 250"F, and joint temperature drops 
of 20 to 50°F. 

temperature drops showed no significant effect on the thermal conductance 
of unfilled joints. 

with the theory of Clausing and Chao did not result in good agreement, 

although reasonably good agreement was obtained in comparisons with the 

experimental data of others. 
each produced approximately ten-fold increases in the thermal conductance 

Within these ranges the mean interface temperatures and 

Attempts to correlate the data for unfilled joints 

The use of indium foil and vacuum grease 

of the unfilled joints, and even larger increases were obtained by using 

the filled grease. 
of Jansson [61],possibly because of differences in the foils. 
the greases were believed to be applicable to a wider range of joint 

configurations because of their ability to flow and fill the interstices 

even at relatively low contact pressures. It is not known, however, what 
influence thermal cycling and vibration and long exposure to space environ- 

ments might have on the filler materials. 

Cunnington!s indium foil data did not agree with that 

Data for 

*Dow-Corning 340 Silicone Heat Sink Compound. 
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In addition to indium and silicone grease, Stubstad [98 ]  investi- 
gated a number of novel filler materials, including felt, rubber, plastic 
foams, wire meshes, wire brush, rubber-oil mixtures, and special fin 

arrangements. 

that greased surfaces gave the highest contact conductances. 

From tests at contact pressures up to 10 lb/in2 he found 

Several silicone rubbers and greases, without metal fillers, 

were tested under vacuum [ 5 7 ]  with an arrangement which simulated the 
mounting of Gemini equipment packages on spacecraft cold plates. 
ture of silicone grease and silver dust was found to be a satisfactory filler. 

Tests indicated its conductance to be 230 Btu/(hr ft2"F>. A five-day, 
low-pressure test indicated that there was negligible evaporation or blow- 
out of the material. 

A mix- 

Miller [77, 801 performed experiments with steel joints demonstrat- 
ing that thermal contact resistance can be substantially reduced by the 
use of suitable metal coatings or filler sheets. He reported that the 
filler or coating should have higher thermal conductivity and lower hardness 

than the base metal. Also, the thickness of filler sheets should not 
exceed twice the average height of asperities. 

Mikic and Rohsenow [ 76 ]  concluded that considerable reduction df 
contact resistance may be achieved by plating both contacting surfaces 

with a material of high thermal conductivity, even if it does not result 

in increasing the actual contact area. This follows from the fact that 

the thermal conductance is proportional to the harmonic mean of the ther- 

mal conductivities of the surface layers through which heat is deviated 
toward the contact spots. 

Lindh [72 ]  performed experiments in air with riveted thin plate 

lap joints having laminated fibergiass fillers of different thicknesses 
and expressed the results in terms of an equivalent air gap. 

thicknesses between 0.03 and 0.1 in. produced little variation in the 
equivalent air gaps, the thickness of which was several thousandths of 

Filler 

5 6  
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an inch; but it is possible that factors not considered in the analysis 

influenced the results. 

demonstrated that the contact resistance could be reduced substantially 

by the use of aluminum sheets and paste (Prestite No. 218) as fillers. 

Other measurements made with riveted lap joints 121 

At temperatures low enough to cause hardening of grease or 

paste-like fillers,their influence may be opposite to that observed at 

higher temperatures. Jacobs and Starr F591, for example, observed that the 

slightest trace of grease caused the conductance to increase at room tem- 

perature, but resulted in a seriously decreased conductance at low tempera- 
tures. 

Berman [91  performed experiments at liquid helium temperatures 

with an 0.012 in. thick disc of Teflon inserted between the end faces of 

copper rods. 
become brittle at low temperatures. With the Teflon disc in place the 

measured thermal resistances were greater than those measured without 
the disc, but when the separately measured thermal resistance of the Teflon 

was subtracted, the resulting values of contact resistances were appreciably 

smaller than the values obtained in the absence of Teflon. This suggests 

that Teflon might be capable of increasing the thermal conductance of 

joints at low temperatures, provided its thickness is small enough. 

While it is a very poor heat conductor, Teflon does not 

6.4 Bo l ted  and Riveted J o i n t s  

The characterization of even carefully controlled joints typical 

of spacecraft design is difficult. In his investigation of practical 
riveted and bolted joints in air, Barzelay 161 found that the thermal con- 

ductance of production-type joints varied over a wide range for what were 
meant t o  be identical constructions. 
thermal conductance of bolted joints under vacuum and reported that the 

Bevans et a1 [ I 2 1  investigated the 

most obvious result" of their tests was the inconsistency of the results It 

for identicaz joints. 
to bowing of the bolted plates. 

joints having a filler material in the interface was even greater than 

that for unfilled joints. 

They indicated that this could be largely attributed 
The variation of results for identicaZ 
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It i s  d i f f i c u l t  t o  match t h e  p r o p e r t i e s  of r ea l  j o i n t s  w i t h  

t h e  p r o p e r t i e s  of specimens ( u s u a l l y  of t h e  rod type) used i n  o b t a i n i n g  

experimental  t h e r m a l  conductance d a t a .  

and assembly processes may cause l o c a l  p h y s i c a l  p r o p e r t i e s  t o  d i f f e r  

from those  of t he  bulk material. 

a l ter  t h e  p r o p e r t i e s  c o n t r o l l i n g  h e a t  t r a n s f e r .  Since a t t empt s  [47] t o  

c o r r e l a t e  thermal conductance d a t a  on c a r e f u l l y  prepared rod specimens 

have proved impractical, i t  does n o t  seem l i k e l y  t h a t  i t  w i l l  be  f e a s i b l e  

t o  a r r i v e  a t  general  p r e d i c t i v e  schemes f o r  b o l t e d  j o i n t s ,  t h e  v a r i a b i l i t y  

of which g r e a t l y  exceeds t h a t  of t h e  c a r e f u l l y  prepared t e s t  specimens. 

Su r face  s t r a i n s  due t o  machining 

Surface contaminants may a l s o  d r a s t i c a l l y  

Experimental d a t a  on h e a t  t r a n s f e r  a c r o s s  b o l t e d  and r i v e t e d  

j o i n t s  available i n  t h e  l i t e r a t u r e  p r i o r  t o  1964 were compiled i n  Ref. 41. 

Brief  accounts of such s t u d i e s ,  e s p e c i a l l y  more r e c e n t  ones,  are given 

below. 

Measurement8 made on a b o l t e d  j o i n t  between aluminum a l l o y  

c y l i n d e r s  i n  a vacuum are repor t ed  i n  Ref. 95. Although t h e  test specimens 

w e r e  designed t o  s imula t e  c o n d i t i o n s  i n  t h e  Saturn S-IC instrument  com- 

partment,  t h e  d i f f e r e n c e s  between t h e  test  specimens and t h e  real  j o i n t s  

probably r e s u l t e d  i n  s u b s t a n t i a l  d i f f e r e n c e s  between t h e i r  c o n t a c t  pres-  

s u r e  d i s t r i b u t i o n s  and a c t u a l  c o n t a c t  areas. Therefore ,  t h e  d a t a  are use- 

f u l  mainly f o r  t h e  q u a l i t a t i v e  t r e n d s  i n d i c a t e d .  

a c r o s s  t h e  i n t e r f a c e  w a s  found t o  i n c r e a s e  as t h e  h e a t  f l u x  w a s  i nc reased  

and t o  decrease as t h e  torque on t h e  b o l t  w a s  i nc reased .  

ambient p re s su re  between and Torr  had l i t t l e  e f f e c t  on t h e  

temperature  drop. 

n e g l i g i b l e  over t he  range of p r e s s u r e s  i n v e s t i g a t e d .  

The temperature  drop 

Varying t h e  

This i s  no t  s u r p r i s i n g  because f l u i d  conductance i s  

Kaspareck and Dai ley 631 measured t h e  thermal c o n t a c t  con- 

ductance of d i s s i m i l a r  metal j o i n t s  of a type  similar t o  t h a t  used i n  

mounting e l e c t r o n i c  equipment t o  l i q u i d  cooled pane l s  i n  t h e  Sa tu rn  I B / V  

v e h i c l e .  Combinations of aluminum and magnesium a l l o y s  were t e s t e d  under 
2 vacuum a t  contact  p r e s s u r e s  up t o  1000 l b / i n  . From t h e i r  measurements 
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they concluded t h a t  t h e  temperature d i f f e r e n t i a l  a c r o s s  a t y p i c a l  i n t e r -  

f a c e  i n  a mounting b o l t  a r e a  would be less than I'K, which i s  considered 

n e g l i g i b l e  f o r  thermal design purposes. However, they had i n s u f f i c i e n t  

d a t a  f o r  computing an average temperature d i f f e r e n t i a l  over  t h e  e n t i r e  

component mounting s u r f a c e .  Since t h e  c o n t a c t  p r e s s u r e  dec reases  r a p i d l y  

wi th  d i s t a n c e  from t h e  b o l t  c e n t e r l i n e ,  t h e  temperature d i f f e r e n t i a l  could 

be s u b s t a n t i a l  a t  p o i n t s  ou t s ide  t h e  immediate v i c i n i t y  of t h e  b o l t s .  

Wellni tz  [ lo21  made measurements, i n  a vacuum, of t h e  thermal 

c o n t a c t  conductance a c r o s s  bolted j o i n t s  between a h e a t  s i n k  p l a t e  and 

a p l a t e  t o  which a r e s i s t i v e  heat ing element w a s  a t t ached .  The p l a t e s  

were of magnesium, and they were b o l t e d  toge the r  w i t h  t i t a n i u m  screws. 

The nominal c o n t a c t  areas were of t h e  o r d e r  of 1 in2.  The ra te  of h e a t  

g e n e r a t i o n  i n  t h e  r e s i s t o r s  w a s  v a r i e d  from 2 t o  10 w, t h e  h ighe r  v a l u e s  

being used f o r  tests i n  which a s i l i c o n e  g r e a s e  w a s  used as a f i l l e r .  

Most of t h e  conductances were i n  t h e  v i c i n i t y  of 1000 (Btu/hr f t 2  OF) 

f o r  j o i n t s  without  a f i l l e r  and about twice t h i s  amount f o r  j o i n t s  w i t h  

t h e  s i l i c o n e  g rease  f i l l e r .  

r e t e s t e d ,  t h e  conductances were p r a c t i c a l l y  i d e n t i c a l  t o  t h e  v a l u e s  ob- 

t a i n e d  b e f o r e  t h e  j o i n t s  were greased,  i n d i c a t i n g  t h a t  any p o s s i b l e  i m -  

p r egna t ion  of g r e a s e  i n t o  t h e  su r face  had l i t t l e  e f f e c t .  V a r i a t i o n  of 

t h e  screw torque from 0.5 t o  3 in- lb  produced very l i t t l e  v a r i a t i o n  i n  

conductance. This w a s  explained by t h e  fac.t t h a t  i n c r e a s i n g  t h e  screw 

to rque  a f f e c t s  t h e  con tac t  pressure i n  t h e  immediate v i c i n i t y  of t h e  b o l t  

b u t  has  l i t t l e  e f f e c t  on t h e  much lower c o n t a c t  p r e s s u r e  over  t h e  span 

between b o l t s ;  s i n c e  t h e  span l eng th  w a s  many times t h e  b o l t  diameter ,  

t h e r e  w a s  l i t t l e  e f f e c t  on t h e  average conductance. This exp lana t ion  

i m p l i e s  t h a t  t h e  area of r e l a t i v e l y  h igh  conductance nea r  t h e  b o l t s  i s  

such a s m a l l  f r a c t i o n  of t h e  t o t a l  i n t e r f a c e  area t h a t  i t  has  l i t t l e  in-  

f l u e n c e  on t h e  o v e r a l l  conductance of t h e  j o i n t .  

When t h e  greased j o i n t s  were cleaned and 

Coulbert  and Lin [28] used an  i n t e r f e r o m e t e r  technique t o  o b t a i n  

e f f e c t i v e  va lues  of c o n t a c t  r e s i s t a n c e  f o r  a i r c r a f t  s t r u c t u r e  j o i n t s  of 
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the riveted or bonded lap-joint type. 
such as sheet thickness and rivet pattern are important for such joints; 
they considered data obtained with machined blocks at various contact 
pressures to be inapplicable. Variations in manufacture of joints of 
identical design caused variations of as much as 100 percent in the values 
of thermal resistance. 
tance, comparable to that of a 1-mil air gap. 
studied, however, was insufficient to permit drawing conclusions concern- 

ing the general effect of various design and manufacturing parameters. 

They pointed out that parameters 

Most of the joints they studied had a high resis- 
The number of joints 

Wide manufacturing variability was also evident in contact 
resistance measurements made under vacuum on riveted joints which had 
skin-stringer configurations typical of space vehicle structural joints 

[31]. 
0.060 in. thick) riveted to bare 2024 T-3 aluminum angle extrusions (0.063 
and 0.125 in. thick). The measured values of interface conductance ranged 
from 71 to 1295 (Btu/hr ft2 OF). Although there were some variations in 
experimental conditions, most of the variation in thermal conductance was 

attributed to manufacturing variability and to the unpredictable bowing 
and warping caused by thermal stresses. 
stringers tended to yield higher thermal conductances, probably because 
their greater stiffness reduced the degree of inter-rivet warping. 

The joints consisted of 2024 T-3 clad aluminum sheet (0.040 and 

The use of thicker plates or 

Measurements of the thermal contact conductance of riveted and 
spot-welded skin stiffener joints and riveted and bolted lap joints were 
reported in Ref. 19. For the skin stiffener joints, the thermal conduc- 

tance varied between 150 and 220 (Btu/hr ft2 OF) but the values appeared 
to be independent of the joining method (riveted or spot welded) and the 
sheet thickness (1, 1.5 and 2 mm). In earlier work [lo31 with riveted 

and bolted lap joints, the same investigators found that increasing the 
plate thickness from 4 m to 8 mm increased the conductance considerably. 
Increasing the number of rivets or bolts per unit area also had the effect 

of considerably increasing the thermal contact conductance across the lap 
3.#----- i n i n t n ,  
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of low thermal r e s i s t a n c e  between a f l a n g e  and mounting p l a t e  has  l i t t l e  

p r a c t i c a l  v a l u e  i n  inc reas ing  thermal conductance a c r o s s  t h e  j o i n t ,  b u t  

i t  is  doub t fu l  t h a t  t h i s  conclusion w a s  j u s t i f i e d  on t h e  b a s i s  of t h e  

b r i e f  i n v e s t i g a t i o n  t h a t  w a s  made of t h i s  f a c t o r .  The r e s u l t s  given i n  

Ref. 35 could be used t o  p r e d i c t  t h e  thermal performance of j o i n t s  s imi l a r  

t o  t h e  ones s t u d i e d .  

I n  Ref. 35, i t  i s  claimed t h a t  t h e  use of a s o f t  shim material 

Measurements of i n t e r f a c e  gaps f o r  some r i v e t e d  l a p  j o i n t s  in-  

d i c a t e  t h a t  t h e  average gap s i z e  depends much more on p l a t e  t h i ckness  than  

on t h e  r ivet  p i t c h  [3b] .  

c l o s e  t o  t h e  r i v e t s .  The region over  which f o r c e  w a s  t r a n s m i t t e d  from 

one p l a t e  t o  t h e  o t h e r  w a s  l imi t ed  t o  an annulus w i t h  an o u t s i d e  diameter 

approximately equa l  t o  t h e  diameter of t h e  r i v e t  head. It w a s  a l s o  found 

that v a r i a t i o n s  i n  workmanship i n  p repa r ing  j o i n t s  could r e s u l t  i n  consider-  

a b l e  d i f f e r e n c e s  i n  t h e  magnitude and d i s t r i b u t i o n  of gap h e i g h t s .  

Macroscopic c o n t a c t  areas were found only ve ry  

The d i f f i c u l t y  of ob ta in ing  r e l i a b l e  estimates of p l a t e  de f l ec -  

t i o n s  i n  b o l t e d  and r i v e t e d  j o i n t s  by a n a l y t i c a l  approaches w a s  shown i n  

Ref. 41, where t h e  work of s e v e r a l  au tho r s  i s  d i scussed .  This p r e s e n t s  

a problem f o r  j o i n t s  i n  a i r  because approximately 90 pe rcen t  of t h e  t o t a l  

conductance f o r  a n  average j o i n t  occu r s  a c r o s s  t h e  r eg ion ,  o u t s i d e  t h e  

immediate v i c i n i t y  of t he  f a s t e n e r ,  where t h e  p l a t e s  are sepa ra t ed  by 

gaps much l a r g e r  than the  su r face  i r r e g u l a r i t i e s .  I n  f a c t ,  f o r  t h i s  s i t u a -  

t i o n  Fontenot [41] concluded t h a t  one must r e s o r t  t o  t h e  use  of experimental  

d a t a .  The problem is less s e r i o u s  f o r  j o i n t s  i n  a vacuum environment, where 

most of t h e  h e a t  i s  conducted through small  areas surrounding t h e  f a s t e n e r s .  

Bevans e t  a2 [ 1 2 ]  developed an  a n a l y t i c a l  s tudy  of t h e  problem 

when one has  a uniform h e a t  f l u x  normal t o  t h e  e x t e r n a l  s u r f a c e s  of p l a t e s  

j o i n e d  by b o l t s .  

w a s  confined t o  a s m a l l  r eg ion  surrounding t h e  b o l t s ,  they used a model 

which considered r a d i a l  h e a t  flow i n  a c i r c u l a r  p l a t e  t o  a c i r c u l a r  s i n k  

Based on t h e  obse rva t ion  t h a t  t h e  apparent  c o n t a c t  area 

6 3  

FRANKLIN INSTITUTE RESEARCH LABORATORIES 



8 
L 

at the center. The total resistance was assumed to be dominated by the 
resistance to heat flow within the thin plates, to and from the bolt area. 

The resistance of the area of apparent contact near the bolt was determined 
by computing the pressure distribution under the bolt, dividing the area 

into annular zones and assigning to each zone a conductance obtained from 
the conductance versus pressure data given in Ref. 13 for a comparable 

joint.* The total resistance was the sum of the resistances through the 
two plates and the resistance of the apparent contact area near the bolt. 

Resistance cornputations for entire bolted plates were made by sectioning 

the plate into rectangular and triangular areas that could be associated 
with individual bolts and then representing each of these areas by a cir- 

cular sector in order to fit the analytical model. The agreement between 
experimental and computed values of joint conductance for several bolt 

configurations was considered by the authors to be adequate. 

'I 
*Unfortunately, in Section 7.2.3 of Ref. 12, where a sample computation is 
given, it is not clear how the bearing area was obtained from the measured 
values given €or b o l t  and nut bearing diameters. 
stresses were so high that over most of the contact area it was evidently 
necessary to use extrapolated 
measured values of which were available only for pressures up to approximately 
5000 lb/in2. 

Furthermore, the computed 

values of conductance versus pressure, 
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7. DATA CORRELATIONS* 

7.1 Holm 

I 
c 
1 
1 
E 
I) 
8 

Holm [55 and 561 examined measurements of thermal  c o n t a c t  

r e s i s t a n c e  f o r  metal j o i n t s  i n  a vacuum environment and found t h a t  t hey  

can b e  c o r r e l a t e d  w i t h  t h e  load a c t i n g  on t h e  j o i n t .  

t h a t  make metal-to-metal conduction t h e  dominant mode of h e a t  t r a n s f e r ,  

i t  is  understandable  t h a t  t h e r e  should be a c o r r e l a t i o n  w i t h  l o a d  i n s t e a d  

of p re s su re  (based on apparent  c o n t a c t  area). 

i n  t h i s  case dependent on the  real c o n t a c t  area, which is  a f u n c t i o n  of 

t h e  load. The apparent  con tac t  area becomes important when conduction 

through a f l u i d  f i l l i n g  t h e  i n t e r s t i c e s  c o n t r i b u t e s  t o  t h e  h e a t  flow. 

Under cond i t ions  

The thermal r e s i s t a n c e  is 

Holm expressed t h e  thermal  resistance i n  t h e  form 

R' = '4 (MI f (F) (7 1) 

where $(M) is  a dimensionless f u n c t i o n  dependent on t h e  metals i n  c o n t a c t  

and f ( F )  is  an  e m p i r i c a l  r e l a t i o n .  H e  found t h a t  a s u i t a b l e  expres s ion  . 

f o r  4 , ( ~ )  is  

(7 2) 

where k is  t h e  thermal conduc t iv i ty ,  H is  t h e  microhardness, and t h e  sub- 

s c r i p t  r e f  a p p l i e s  t o  a r e fe rence  metal. Taking s i lver  as t h e  r e f e r e n c e  

metal, Holm ob ta ined  

4 ( M )  = 0.019 &/k, (7 3) 
2 

where H is  i n  n/m and k i n  ( w a t t / m  OK). The empi r i ca l  f u n c t i o n  f ( F )  is  

t h e  l i n e  drawn i n  Figure 7.1. 

* T h e o r e t i c a l  d a t a  c o r r e l a t i o n s  are a l s o  given i n  S e c t i o n s  4.1.2, 4.1.3, 
and 4.2 of t h i s  r e p o r t .  
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F (NEWTONS) 

Fig. 7.1 - Empirical Correlation of Thermal Contact Resistance 
Data According to Holm C551. 

f (F)  = R/$(M),  see Eq. 7.1. 
F = tota l  force on interface 
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Holm considered Eq.(7.1) capab le  of y i e l d i n g  v a l u e s  of thermal  

c o n t a c t  r e s i s t a n c e  s u i t a b l e  f o r  normal design a p p l i c a t i o n s  i n  a vacuum 

environment. 

s t a n t i a l l y  from h i s  empi r i ca l  curve, Figure 7 . 1 ,  d i d  n o t  correspond t o  

s i t u a t i o n s  l i k e l y  t o  b e  m e t  i n  p r a c t i c e .  

of d a t a  r ep resen ted  i n  Figure 7.1*, however, t h e  g e n e r a l  u s e f u l n e s s  of 

Eq. (7 .1) ,  even i n  p r a c t i c a l  cases, does n o t  seem t o  have been e s t a b l i s h e d .  

An a t t empt  by F r i e d  [47] t o  apply Holm's suggested c o r r e l a t i o n ,  w i th  

s l i g h t  mod i f i ca t ions ,  d i d  no t  prove p r a c t i c a l  f o r  p r e d i c t i n g  v a l u e s  of 

thermal con t ac t conduc t anc e. 

H e  i n d i c a t e d  t h a t  experimental  d a t a  t h a t  dev ia t ed  suh- 

I n  view of t h e  l i m i t e d  amount 

7.2 Graff 

Graff [49a] suggested a design procedure based on a c o r r e l a t i o n  

of thermal  conductance d a t a  i n  t h e  l i t e r a t u r e  i n  terms of two non- 

dimensional groups : 

Pressure,  p/B 

Conductance, hp/kp 

where 

B = B r i n e l l  hardness number ( r e s i s t a n c e  of material t o  

h = ehermal conductance of j o i n t  i n t e r f a c e ,  

k = thermal  conduc t iv i ty  of material ,  

p = apparent  con tac t  p re s su re ,  

p = d e n s i t y  of material. 

s u r f a c e  p e n e t r a t i o n ) ,  

Data from t h e  l i t e r a t u r e  w e r e  used t o  p l o t  graphs of p/B vs. hp/kp f o r  

f e r r o u s  and non-ferrous metals. 

v a l u e  of hp/kp and t o  compute h i f  t h e  va lue  of p/B i s  known. 

graphs i n  R e f .  49a enable  one t o  t a k e  i n t o  account t h e  mean i n t e r f a c e  

temperature  and t h e  temperature drop a c r o s s  t h e  i n t e r f a c e .  

The graphs enab le  one t o  o b t a i n  t h e  

Other 

Unfortunately,  

* See Table 1, Ref. 55. 
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f o r  purposes of t h i s  r e p o r t ,  t h e  only d a t a  a p p l i c a b l e  t o  vacuum cond i t ions  

i n  Ref. 49a a r e  f o r  o p t i c a l l y  f l a t  s u r f a c e s , o f  copper,  s i lver ,  and gold. 

Hsieh [58] prepared a well-documented c o r r e l a t i o n  of d a t a  

a v a i l a b l e  up t o  1963 according t o  C r a f f ' s  method. 

aluminum a l l o y  j o i n t s  i n  vacuum are included i n  Ref. 58. 

Data on magnesium and 

7.3 Bloom 

Bloom [13] r epor t ed  measurements of thermal con tac t  conductance 

f o r  2-in. diameter specimens of aluminum a l l o y  (7075-T6) and s t a i n l e s s  

steel  (17-4 PH) t e s t e d  i n  a vacuum environment a t  con tac t  p re s su res  up 

t o  1000 l b / i n  . 
rms. Using graphs of l o g  h ve r sus  l o g  p, h e  c o r r e l a t e d  h i s  d a t a  and 

o t h e r  d a t a  a v a i l a b l e  i n  t h e  l i t e r a t u r e  wi th  equa t ions  of t h e  form 

2 The s u r f a c e  roughnesses ranged between 3 and 135 p i n , ,  

h % p C  , 
where h i s  t h e  thermal con tac t  conductance, p is t h e  apparent  con tac t  

p r e s s u r e ,  and c i s  a constant .  For most of t h e  cond i t ions  covered by 

h i s  p l o t s ,  t h e  v a l u e  of c ranged between 0.8 and 0.9. 
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8. MISCELLANEOUS TOPICS 

8.1 Analogy Between Thermal and E l e c t r i c a l  C o n d u c t i v i t i e s  

Since thermal and e l e c t r i c a l  c o n d u c t i v i t i e s  are r e l a t e d  by 

t h e  Wiedemann-Franz law*,  many a t t empt s  have been made t o  deduce v a l u e s  

of thermal  con tac t  conductance from e l e c t r i c a l  measurements. 

between e l e c t r i c a l  and thermal conduction i s  d i scussed  i n  Ref. 56. 

Although e l e c t r i c a l  measurements may provide a convenient means of 

s tudy ing  t h e  thermal  problem under c e r t a i n  cond i t ions  [56a l ,  t h i s  has 

u s u a l l y  been found t o  be an u n s u i t a b l e  approach [9,  10, 11, 18, 21 ,  34, 

The analogy 

39, 48, 52, 66, 1051- 

I Fr ied  [471 attempted t o  c o r r e l a t e  e l e c t r i c a l  and thermal con tac t  

r e s i s t a n c e s  by making both types of measurements on t h e  same specimens 

i n  a vacuum environment, b u t  the d a t a  did no t  seem t o  be amenable t o  

development of a r e l i a b l e  scheme f o r  p r e d i c t i n g  thermal  con tac t  conductance 

from measurements of e lec t r ica l  r e s i s t a n c e .  Berman [9] who also made 

simultaneous measurements of thermal and e l e c t r i c a l  conductance under 

vacuum, found wide d e v i a t i o n s  from t h e  Wiedemann-Franz l a w .  H e  a l s o  

discovered t h a t  e l e c t r i c a l  conductance is much more dependent than 

thermal  conductance on t h e  p r i o r  h i s t o r y  of a j o i n t .  

Electrical  c o n t a c t  conductance is much more dependent than 

thermal  conductance on oxide f i l m s  which are u s u a l l y  p re sen t .  

conduction of e l e c t r i c i t y  through metall ic oxides is  n o t  due t o  t h e i r  

i n t r i n s i c  conduc t iv i ty  1391. Thin oxide f i lms  act  as p o t e n t i a l  b a r r i e r s  

which e l e c t r o n s  can t r a v e r s e  by a t u n n e l  e f f e c t .  When t h e  oxide f i l m  

th i ckness  exceeds approximately 100 A, t h e  f i l m  r e s i s t a n c e  is governed 

by t h e  i n t r i n s i c  conduc t iv i ty ,  b u t  i t  i s  s t r o n g l y  dependent on l a t t i c e  

The 

* The r a t i o  of thermal t o  e l e c t r i c a l  conduc t iv i ty  i s  p r o p o r t i o n a l  t o  t h e  
a b s o l u t e  temperature.  
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imperfect ions i n  t h e  c r y s t a l s .  

t h e  e l e c t r i c a l  r e s i s t a n c e  can b e  made, a c c u r a t e  va lues  can b e  ob ta ined  

only be experimental  measurement. 

Although approximate computations of 

8.2 Trapped Gases 

Data r epor t ed  i n  Ref. 49 i n d i c a t e  t h a t  a i r  might b e  t r apped  

i n  j o i n t s  assembled i n  a normal atmosphere and subsequent ly  exposed t o  

a vacuum environment. 

of l a r g e r  thermal conductances f o r  two such samples a t  low con tac t  

p re s su res ,  by comparison with conductances observed when t h e  samples were 

assembled under vacuum. 

This may have been r e s p o n s i b l e  f o r  t h e  obse rva t ion  

When a i r  was t rapped i n  t h e  i n t e r f a c e ,  Bloom [13] found t h a t  

thermal contact  conductances were as much as 50 percent  g r e a t e r  t han  t h e  

va lues  observed when t h e  procedure prevented such a i r  t r app ing .  

have been outgassed f o r  as long as 60 hours  [61] t o  e l i m i n a t e  t h e  e f f e c t  

of t rapped gases from measurements of thermal con tac t  r e s i s t a n c e  i n  a 

vacuum environment. The e f f e c t s  of t rapped gases  are a l s o  d i scussed  

b r i e f l y  i n  Ref. 4 6 .  

Specimens 

The r e l a t i o n  between t h e  rate of gas leakage through an i n t e r f a c e  

between metals i n  c o n t a c t  and s u r f a c e  roughness is  examined i n  Ref. 34. 

Both t h e o r e t i c a l  and experimental  r e s u l t s  are p resen ted  showing t h a t  t h e  

leakage rate is  p r o p o r t i o n a l  t o  t h e  square of t h e  mean roughness of t h e  

su r faces .  

8 . 3  Mean Interface Temperature 

Many i n v e s t i g a t o r s  [7 ,  8, 13, 34, 59, 65, and 941 have 

ob served t h a t  t h e  thermal  conductance i n c r e a s e d  as t h e  mean temperature  

of t h e  i n t e r f a c e  i s  increased.  The i n c r e a s e  i s  p a r t l y  due t o  i n c r e a s e d  

r a d i a t i v e  h e a t  t r a n s f e r  a t  h i g h e r  temperature  levels and i s  u s u a l l y  

s m a l l  
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Berman [9] found t h a t  thermal  conductance was p r o p o r t i o n a l  t o  
2 T 

j o i n t  (copper/copper, s t e e l / s t e e l ,  c o p p e r / t e f l o n ) .  H e  found t h e  tempera- 

t u r e  dependence t o  b e  small, however, a t  temperatures  n e a r  70'K. 

a t  temperatures  of a few degrees Kelvin,  r e g a r d l e s s  of t h e  type of 

8.4 Di rec t i on  o f  Heat Flow 

I n  some experiments t h e  thermal con tac t  r e s i s t a n c e  has  been 

found t o  b e  dependent upon t h e  d i r e c t i o n  of h e a t  f low through t h e  

i n t e r f a c e .  Clausing [26], who reviewed t h e  l i t e r a t u r e  on t h i s  s u b j e c t ,  

pointed out t h a t  t h e  e f f e c t  has been a confusing phenomenon: 

workers have observed i t ,  o the r s  have n o t ,  and a number of exp lana t ions  

have been o f fe red .  

some 

Clausing states t h a t  t h e  d i r e c t i o n a l  e f f e c t  cannot be explained 

wi th  t h e  microscopic model, which assumes a uniform d i s t r i b u t i o n  of con tac t  

p o i n t s  throughout t h e  i n t e r f a c e .  

work are based on t h e  macroscopic model. 

mechanical stresses a s s o c i a t e d  with deformation of a s p e r i t i e s  are u s u a l l y  

h igh ,  wh i l e  t h e  mechanical s t r e s s e s  a s s o c i a t e d  wi th  formation o f  

macroscopic contact  areas are usua l ly  low. Therefore ,  i t  i s  expected 

t h a t  thermal s t r a i n  w i l l  have l i t t l e  e f f e c t  on t h e  microscopic  c o n t a c t  

areas bu t  might apprec i ab ly  in f luence  t h e  . s i z e  of macroscopic c o n t a c t  

areas and t h e  a s s o c i a t e d  macroscopic c o n s t r i c t i o n  r e s i s t a n c e .  

used a model i n  which t h e  thermal s t r a i n  e f f e c t s  r e s u l t  only from 

temperature  g r a d i e n t s  p a r a l l e l  t o  t h e  con tac t  p l ane ,  such g r a d i e n t s  

r e s u l t i n g  from t h e  presence of macroscopic c o n s t r i c t i o n s  o r  from h e a t  

t r a n s f e r  with t h e  environment through t h e  l a te ra l  boundaries  of t h e  

members i n  con tac t .  The a n a l y s i s  of t h e  i n f l u e n c e  of macroscopic 

c o n s t r i c t i o n s  showed t h a t ,  when d i s s i m i l a r  metals are in c o n t a c t ,  t h e  

s i z e  of t h e  macroscopic con tac t  area tends t o  i n c r e a s e  when h e a t  flows 

from t h e  metal of l a r g e r  thermal conduc t iv i ty  t o  t h e  one of lower thermal 

H i s  a n a l y s i s  and co r robora t ing  experimental  

It w a s  reasoned t h a t  l o c a l  

Clausing 
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conduc t iv i ty  and vice-versa. 
s u r f a c e  geometries,  caused t h e  thermal c o n t a c t  r e s i s t a n c e  t o  depends on 

t h e  d i r e c t i o n  of h e a t  flow. The d i r e c t i o n a l  e f f e c t  i s  small f o r  low 

h e a t  f l u x  and high thermal conduct ivi ty .  

This  tendency, which is  independent of t h e  

Thermal s t r a i n s  r e s u l t i n g  from h e a t  t r a n s f e r  w i th  t h e  environment 

through t h e  l a te ra l  boundaries of t h e  members i n  c o n t a c t  may cause e i t h e r  

an  i n c r e a s e  o r  dec rease  i n  thermal con tac t  r e s i s t a n c e ,  depending on t h e  

o r i g i n a l  s u r f a c e  geometry and t h e  d i r e c t i o n  of h e a t  flow. 

Experiments were conducted wi th  c y l i n d r i c a l  specimens having 

s p h e r i c a l  s u r f a c e s  on t h e  ends placed i n  con tac t .  

v a r i e d  from a few microinches t o  several hundred microinches,  and t h e  

s u r f a c e  roughness w a s  about 4 pin.  

h e a t  f l u x ,  heat  f low d i r e c t i o n ,  and con tac t  p r e s s u r e  f o r  a s t a i n l e s s  

steel/aluminum i n t e r f a c e .  

steel/magnesium i n t e r f a c e .  

c o n s t r i c t i o n  e f f e c t  w a s  dominant. A t  t h e  h i g h e r  rates of h e a t  flow, 

reversal of the heat flow d i r e c t i o n  caused t h e  c o n t a c t  r e s i s t a n c e  t o  

change by approximately 300 percent .  

The f l a t n e s s  d e v i a t i o n s  

Figure 8.1 shows t h e  i n f l u e n c e  of 

S i m i l a r  r e s u l t s  were ob ta ined  f o r  a s t a i n l e s s  

Conditions were such t h a t  t h e  macroscopic 

These r e s u l t s  i n d i c a t e  t h a t ,  even i n  t h e  absence of h y s t e r e s i s  

e f f e c t s ,  t h e  r e l a t i o n  between thermal  c o n t a c t  r e s i s t a n c e  and c o n t a c t  

p re s su re  f o r  a j o i n t  between d i s s i m i l a r  metals cannot b e  r ep resen ted  by 

a s i n g l e  u n i v e r s a l  curve,  b u t  r e q u i r e s ,  i n s t e a d ,  a family of curves  wi th  

h e a t  f l u x  as parameter. 

The f a c t  t h a t  t h e  corresponding dashed and d o t t e d  curves 

i n  Figure 8 . 1 h a v e  common i n t e r c e p t s  on t h e  h o r i z o n t a l  a x i s  w a s  

i n t e r p r e t e d  as i n d i c a t i n g  t h a t  t h e  d i r e c t i o n a l  e f f e c t  d i sappea r s  when 

t h e r e  is no h e a t  f l o w  [22]. i i c tua i iy ,  i f  t h e  d i r e c t i o n  of heat flow 

from aluminum t o  s t a i n l e s s  steel is considered p o s i t i v e  and t h e  oppos i t e  

d i r e c t i o n  considered nega t ive ,  one would expect  t h e  d a t a  f o r  a given 

va lue  of 

w e  don't 

t h e  parameter C t o  f a l l  on a s i n g l e  smooth curve. 

r e a l l y  have two curves.  I f  t h e  dashed curves i n  Figure 8.1 are 

Therefore ,  
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r e f l e c t e d  about t h e  h o r i z o n t a l  a x i s ,  each p a i r  of curves  y i e l d s  a s i n g l e  

smooth curve; b u t  i f  t h e  same is  done f o r  t h e  magnesium/stainless steel  d a t a  

i n  Ref. 26 a change i n  s l o p e  occurs  a t  Q 

explain.  

* 
0, which i s  d i f f i c u l t  t o  

The d i r e c t i o n a l  t r e n d  observed by Clausing i s  oppos i t e  t o  

t h a t  observed by o t h e r  workers f o r  t h e  same materials. 

a consequence of d i f f e r e n c e s  i n  experimental  arrangements. 

agreement among obse rva t ions  of d i r e c t i o n a l  e f f e c t s  emphasizes the 

extreme c a r e  r e q u i r e d  i n  designing apparatus ,  making measurements, and 

reducing da ta  i n  o r d e r  t o  o b t a i n  meaningful r e s u l t s .  

This  may be 

The l a c k  of 

8.5 H y s t e r e s i s  

It has been observed by many i n v e s t i g a t o r s  [21, 3 4 ,  3 9 ,  52, 

1011 t h a t  t h e  values  of thermal conductance during unloading of a j o i n t  

are h i g h e r  t han  those  during loading. One of t h e  exp lana t ions  of t h i s  

phenomenon is t h a t  t h e  recovery of deformation during unloading occurs  
e l a s t i c a l l y ,  w i t h  t h e  con tac t  area p r o p o r t i o n a l  t o  F 2 / 3 .  , whereas t h e  

c o n t a c t  area i s  p r o p o r t i o n a l  t o  t h e  load ,  F, du r ing  t h e  p l a s t i c  deformation 

which may dominate t h e  loading cond i t ion .  

load during unloading w i l l  t h e r e f o r e  be g r e a t e r  t h a n  t h e  c o n t a c t  area a t  

t h e  same load during loading.  

formation of co ld  welds during loading and t h e  adherence a t  such p o i n t s  

during t h e  unloading. 

25, 4 3 ,  and 4 5 .  

The c o n t a c t  area a t  a given 

i Another c o n t r i b u t i n g  f a c t o r  may be t h e  

The h y s t e r e s i s  e f f e c t  i s  a l s o  d i scussed  i n  Refs. 8,  

8.6 E f f e c t  o f  Time 

Clausing and Chao [251 r epor t ed  observing changes o f  c o n t a c t  

r e s i s t a n c e  wi th  t i m e .  I n  t h e  case of magnesium, a continuous dec rease  

I of con tac t  r e s i s t a n c e  with t i m e  w a s  observed, and t h e  e f f e c t  w a s  a t t r i b u t e d  

* See Figure 7 of R e f .  26. 
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t o  creep. For s ta inless  s t e e l  specimens, a c y l i c  v a r i a t i o n  i n  thermal  

r e s i s t a n c e  observed a t  very l i g h t  l oads  appeared t o  b e  caused by thermal  

s t r a i n .  They a l s o  observed t h a t  p rope r ty  changes r e s u l t i n g  from aging 

o r  annea l ing  of h e a t  t r e a t e d  a l l o y s  can cause apprec i ab le  change i n  

thermal  con tac t  r e s i s t a n c e  when j o i n t s  between such materials are ope ra t ed  

a t  e l e v a t e d  temperature.  I n  add i t ion  t o  a h y s t e r e s i s  e f f e c t ,  S tubs t ad  [ 99 ]  

encountered a creep e f f e c t  when a load w a s  a p p l i e d  f o r  many hours .  H e  

pointed ou t ,  t h e r e f o r e ,  t h a t  in.formation p e r t i n e n t  t o  t h e s e  e f f e c t s ,  

such as dura t ion  of c o n t a c t  and load  cyc l ing ,  should b e  considered i n  

us ing  experimental  con tac t  r e s i s t a n c e  d a t a  f o r  design purposes. 

8.7 Transient Effects 

Most of t h e  experimental  d a t a  on thermal  con tac t  r e s i s t a n c e  

have been ob ta ined  under s t eady- s t a t e  condi t ions.  However, some t r a n s i e n t  

e f f e c t s  have been s t u d i e d  [15, 16, 1 7 ,  891: among them, t h e  e f f e c t  of 

t h e  rate at  which the  i n t e r s t i c e s  of an i n t e r f a c e  are emptied of f l u i d ,  

t h e  e f f e c t  of a sudden change i n  temperature environment, and t h e  e f f e c t  

of a sudden change i n  thermal contact  conductance. Such t r a n s i e n t s  may . 

occur  i n  p r a c t i c e ,  such as when a h e a t  source is  tu rned  on o r  o f f  and 

when a space v e h i c l e  has  i t s  environment changed from t h a t  on t h e  e a r t h  

t o  t h a t  i n  space. Ref. 1 6  a l s o  d i s c u s s e s  t h e  problem of thermal i n t e r -  

f e r e n c e  among several p i eces  of equipment .a t tached t o  a common h e a t  

s i n k  and t h e  problem of developing a pass ive  thermal  c o n t r o l  device 

invo lv ing  a v a r i a b l e  thermal contact .  T rans i en t  behav io r  i n  t h e  presence 

of thermal  c o n t a c t  conductances are a l s o  d i scussed  b r i e f l y  i n  Reg. 41. 

Schauer and Giedt [89]  developed a method f o r  measuring t h e  

thermal  con tac t  conductance between two p l a t e s  du r ing  t h e  t r a n s e i n t  

fo l lowing  sudden h e a t i n g  of one p l a t e .  

a luminum/stainless  s tee l  and s t a i n l e s s  s t e e l / a l u m i n a  con tac t s .  For t h e  

m e t a l l i c  c o n t a c t ,  t h e  con tac t  conductance inc reased  by about 200 percent  

i n  approximately 70 m s e c  fol lowing t h e  sudden h e a t i n g ;  t hen  i t  l e v e l e d  

They a p p l i e d  t h e  method t o  s e v e r a l  

75 

FRANKLIN INSTITUTE RESEARCH LABORATORIES 



off  a t  values  t h a t  depend on t h e  i n i t i a l  temperature of t h e  p l a t e s  and 

agreed wi th  p red ic t ed  va lues  w i t h i n  2 20 percent .  

c o n t a c t s ,  however, e x h i b i t e d  a s t eady  decrease i n  th’ermal conductance 

fol lowing a rise during t h e  f i r s t  10 o r  20 mSec after t h e  sudden hea t ing .  

The r e s u l t s  e s t a b l i s h e d  t h e  f e a s i b i l i t y  of u s i n g  a c a p a c i t i v e  d i scha rge  

The metal/ceramic 

f o r  sudden hea t ing  of one p l a t e  i n  con tac t  with ano the r  and of u s ing  

s u r f a c e  mounted thermocouples f o r  ob ta in ing  temperature d a t a  from which 

t h e  t r a n s i e n t  behav io r  of thermal con tac t  conductance can b e  computed. 

8.8 Surface Films 

Oxidation and o t h e r  types of contamination produce s u r f a c e  

f i lms ,  t h e  in f luence  of which on con tac t  r e s i s t a n c e  i s  no t  w e l l  understood. 

I f  t h e  f i l m s  a r e  t h i n ,  t h e i r  e f f e c t  may b e  n e g l i g i b l e  .- e s p e c i a l l y  i n  t h e  

presence of a conducting f l u i d  f i l l i n g  t h e  vo ids  of  t h e  i n t e r f a c e .  

a vacuum environment, however, with r e l a t i v e l y  h igh  h e a t  f l u x e s  through 

t h e  microscopic con tac t  areas, t h e  e f f e c t  of s u r f a c e  f i l m s  may b e  

important. For example, it was found t h a t  t h e  i n t e r f a c e  conductance 

inc reased  by more than  an o r d e r  of magnitude when magnesium samples on 

which a v i s i b l e  f i l m  had formed were r epo l i shed  [27]. With a gaseous 

medium f i l l i n g  t h e  vo ids ,  b u t  a t  comparatively high thermal f l u x e s ,  

Miller [781 observed a marked i n c r e a s e  i n  t h e  thermal  r e s i s t a n c e  of 

c o n t a c t s  between f u e l  element components when an  ox ide  f i l m  w a s  p re sen t .  

I n  

Oxide f i lms  form very r a p i d l y  on metal s u r f a c e s ,  a f i l m  

10-15 A t h i c k  forming almost immediately [67, P 181. The f i l m s  are 

u s u a l l y  very b r i t t l e ,  p a r t i c u l a r l y  a f t e r  reaching a c r i t i c a l  th i ckness .  

It has  been shown t h a t  p l a s t i c  deformation of a metal cons ide rab ly  

i n c r e a s e s  t h e  r a t e  of ox ida t ion .  

t i m e ,  u l t i m a t e l y  becoming zero.  On f r e s h l y  c u t  s u r f a c e s  t h e  r a t i o  

of f i l m  th i ckness ,  6 0 ,  t o  thermal  c o n d u c t i v i t y  of t h e  oxide,  k o ,  i s  s m a l l  

compared t o  6/k f o r  t h e  base  materials. 

t h z ~  the base materials, the zxide f i l m  xi:: cr-aiib:e under a s m a l l  h a d  

The rate of f i l m  growth d e c r e a s e s  wi th  

Also, be ing  much more b r i t t l e  
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f 

a t  t h e  p o i n t s  of contact .  For these  reasons,  oxide f i l m s  probably have 

n e g l i g i b l e  in f luence  on t h e  thermal conductance between c l ean  s u r f a c e s .  

Thick tenacious f i l m s ,  however, may i n f l u e n c e  thermal  conductance 

s u b s t a n t i a l l y ,  e s p e c i a l l y  i n  a vacuum environment. Clausing and Chao [ 2 7 ]  

mention t h a t  s u f f i c i e n t l y  t h i c k  f i lms  w i l l  'I. . . prevent  conduction by 

t h e  quantum mechanical t u n n e l  e f f e c t ,  which otherwise provides  a 

s i g n i f i c a n t  c o n t r i b u t i o n  t o  hea t  flow ac ross  gaps of less than  about 

0.20 A ...I' i n  he igh t .  

o f  f i l m s  i n c r e a s e s  as t h e  f l a t n e s s  of s u r f a c e  is inc reased  [27] .  

There are a l s o  i n d i c a t i o n s  t h a t  t h e  importance 

Fenech and Rohsenow [39] developed a recurrence r e l a t i o n  f o r  

t a k i n g  i n t o  account t h e  a d d i t i o n a l  thermal  r e s i s t a n c e  due t o  second-order 

s u r f a c e  roughness, such as waviness. The same r e l a t i o n  can be used t o  

t a k e  i n t o  account t h e  e f f e c t  of oxide f i lms [ 5 3 ] ,  b u t  t h e  procedure seems 

i m p r a c t i c a l  because of t h e  d i f f i c u l t y  of measuring t h e  f i l m  t h i c k n e s s ,  

6 0 .  Furthermore, t h e  l i k e l i h o o d  of c rack ing  and crumbling of t h e  oxide 

f i l m  when i t  i s  sub jec t ed  t o  a load and when t h e  s u r f a c e s  deform raises 

q u e s t i o n s  concerning t h e  d e f i n i t i o n  o f  f i l m  thickness .  

Although t h i n  ox ide  f i l m s  may no t  s i g n i f i c a n t l y  a f f e c t  thermal  

c o n t a c t  conductance, they do have a s e r i o u s  i n f l u e n c e  on e lectr ical  

conduc t iv i ty .  In f a c t ,  measurements of e l e c t r i c a l  conduc t iv i ty  [38] 

have been used t o  i n d i c a t e  t h e  growth of f i l m  th i ckness  wi th  t i m e .  This  

i s  one of t h e  d i f f e r e n c e s  between thermal and e l e c t r i c a l  e f f e c t s  which 

make i t  d i f f i c u l t  t o  deduce thermal d a t a  from e lec t r ica l  measurements. 

Sr. S t a f f  P h y s i c i s t  
4.. (J Z. Zudans 

Technical D i r e c t o r  
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APPENDIX A 

CONVERSION FACTORS FOR PRESSURE.AND THERMAL UNITS 

Pressure 

1 (lb/in2) = 6.895 x lo4 (dyne/cm2) 
= 6.895 (kn/m 2 ) 

Thermal Conductance 

1 (Btu/hr ft2 OF) = 5.677 (w/m 2 "C) 

1 (cal/cm 2 sec "C) = 7372 (Btu/ft2 hr OF) 

= 0.3663 (w/in2 "C) 

= 1.356 x (cal/cm2sec "C) 

Thermal Resistance 

1 (hr ft2 "F/Btu) = 2.730 (in2 "C/w) 

Thermal Flux 

1 (Btu/hr ft2) = 1.929 x (Btu/in2sec) 
= 3.154 (w/m2) 
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Appendix B 

OTHER LITERATURE REVIEWS 

A number of reviews of l i t e r a t u r e  on conductance are a v a i l a b l e .  

Experimental measurements i n  a vacuum, ob ta ined  p r i o r  t o  1963, were 

reviewed by Fried i n  R e f .  4 3 .  

review [45]. An ex tens ive  review w a s  a l s o  prepared by Clausing and Chao [25]. 

A review of computational methods and a compilat ion of d a t a  r epor t ed  up 

t o  1964 w a s  w r i t t e n  by Fontenot [ 4 1 ] .  Excel lent  gene ra l  reviews were 

w r i t t e n  by Wong [105], Hsieh [58],  and more r e c e n t l y  by Minges [81]. 

Ref. 84 i s  a report  of proceedings a t  a thermal j o i n t  conductance conference 

which included a b r i e f  review [100a] of work done o r  monitored by t h e  

Je t  Propuls ion Laboratory.  Another b r i e f  review i s  given i n  Ref. 14. 

F r i e d  la ter  prepared a more g e n e r a l  
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